
1 Integral Equations and Picard’s
Method

1.1 Integral equations and their relationship to differential
equations

Four main types of integral equations will appear in this book: their names occur in the
table below. Suppose that f : [a, b] → R and K : [a, b]2 → R are continuous, and that
λ, a, b are constants.

Volterra non-homogeneous y(x) = f(x) +
∫ x

a
K(x, t)y(t) dt

Volterra homogeneous y(x) =
∫ x

a
K(x, t)y(t) dt

Fredholm non-homogeneous y(x) = f(x) + λ

∫ b

a
K(x, t)y(t) dt

Fredholm homogeneous y(x) = λ

∫ b

a
K(x, t)y(t) dt

where x ∈ [a, b]. Note that the Volterra equation can be considered as a special case of
the Fredholm equation when K(x, t) = 0 for t > x in [a, b].

We will search for continuous solutions y = y(x) to such equations. On occasion, x
may range over a different domain from [a, b]; in which case, the domains of f and K
will need appropriate modification.
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6 Chapter 1: Integral Equations and Picard’s Method

The function K = K(x, t) appearing in all four equations is called the kernel of the
integral equation. Such a kernel is symmetric if K(x, t) = K(t, x), for all x, t ∈ [a, b].

A value of the constant λ, for which the homogeneous Fredholm equation has a
solution y = y(x) which is not identically zero on [a, b], is called an eigenvalue, or
characteristic value, of that equation, and such a non-zero solution y = y(x) is called
an eigenfunction, or characteristic function, ‘corresponding to the eigenvalue λ’. The
analogy with linear algebra is not accidental, as will be apparent in later chapters.

To investigate the relationship between integral and differential equations, we will
need the following lemma which will allow us to replace a double integral by a single one.

Lemma 1 (Replacement Lemma) Suppose that f : [a, b] → R is continuous. Then

∫ x

a

∫ x′

a
f(t) dtdx′ =

∫ x

a
(x − t)f(t) dt, (x ∈ [a, b]).

Proof Define F : [a, b] → R by

F (x) =
∫ x

a
(x − t)f(t) dt, (x ∈ [a, b]).

As (x− t)f(t) and
∂

∂x
[(x − t)f(t)] are continuous for all x and t in [a, b], we can use [G]

of Chapter 0 to differentiate F :

F ′(x) = [(x − t)f(t)]
t=x

d

dx
x +

∫ x

a

∂

∂x
[(x − t)f(t)] dt =

∫ x

a
f(t) dt.

Since, again by [G] of Chapter 0,
∫ x

a
f(t) dt, and hence

dF

dx
, are continuous functions of

x on [a, b], we may now apply the Fundamental Theorem of Calculus ([E] of Chapter 0)
to deduce that

F (x′) = F (x′) − F (a) =
∫ x′

a
F ′(x) dx =

∫ x′

a

∫ x

a
f(t) dtdx.

Swapping the roles of x and x′, we have the result as stated. �
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1.1 Relationship of differential to integral equations 7

Alternatively, define, for (t, x′) ∈ [a, x]2,

G(t, x′) =

{
f(t) when a ≤ t ≤ x′ ≤ x,

0 when a ≤ x′ ≤ t ≤ x.

The function G = G(t, x′) is continuous, except on the line given by t = x′, and hence
integrable. Using Fubini’s Theorem ([F] of Chapter 0),

∫ x

a

∫ x′

a
f(t) dtdx′ =

∫ x

a

(∫ x

a
G(t, x′) dt

)
dx′

=
∫ x

a

(∫ x

a
G(t, x′) dx′

)
dt

=
∫ x

a

(∫ x

t
f(t) dx′

)
dt

=
∫ x

a
(x − t)f(t) dt. �

We now give an example to show how Volterra and Fredholm integral equations can
arise from a single differential equation (as we shall see, depending on which sort of
conditions are applied at the boundary of the domain of its solution).

Example 1 Consider the differential equation

y′′ + λy = g(x), (x ∈ [0, L]),

where λ is a positive constant and g is continuous on [0, L]. (Many readers will already be
able to provide a method of solution. However, what we are considering here is equivalent
formulations in terms of integral equations.) Integration from 0 to x (x ∈ [0, L]) gives

y′(x) − y′(0) + λ

∫ x

0
y(t) dt =

∫ x

0
g(t) dt.
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8 Chapter 1: Integral Equations and Picard’s Method

(Note that, as y′′ must exist for any solution y, both y and y′′ = g(x)−λy are continuous,

so that
∫ x

0
y′′(t) dt = y′(x) − y′(0) by [E] of Chapter 0.) As y′(0) is a constant, a further

integration from 0 to x and use of the Replacement Lemma twice now gives

(1) y(x) − y(0) − xy′(0) + λ

∫ x

0
(x − t)y(t) dt =

∫ x

0
(x − t)g(t) dt.

At this point comes the parting of the ways: we consider two ways in which conditions
can be applied at the boundary of the domain of a solution.

(i) Initial conditions where y and y′ are given at the ‘initial’ point. Suppose here that
y(0) = 0 and y′(0) = A, a given real constant. Then

(2) y(x) = Ax +
∫ x

0
(x − t)g(t) dt − λ

∫ x

0
(x − t)y(t) dt.

Thus we have a Volterra non-homogeneous integral equation with, in the notation of the
above table,

K(x, t) = λ(t − x),

f(x) = Ax +
∫ x

0
(x − t)g(t) dt,

which becomes homogeneous if and only if A and g satisfy

Ax +
∫ x

0
(x − t)g(t) dt = 0.

All equations are valid for x in [0, L].

(ii) Boundary conditions where y is given at the end-points of an interval. Suppose
here that y(0) = 0 and y(L) = B, another given constant. Then, putting x = L in (1),
we have

(3) y′(0) =
1
L

(
λ

∫ L

0
(L − t)y(t) dt −

∫ L

0
(L − t)g(t) dt + B

)
.

Substituting back into (1) and writing, for appropriate h,

∫ L

0
h(t) dt =

∫ x

0
h(t) dt +

∫ L

x
h(t) dt,
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1.1 Relationship of differential to integral equations 9

one easily derives (and it is an exercise for the reader to check that)

(4) y(x) = f(x) + λ

∫ L

0
K(x, t)y(t) dt (x ∈ [0, L])

where

K(x, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t

L
(L − x) when 0 ≤ t ≤ x ≤ L

x

L
(L − t) when 0 ≤ x ≤ t ≤ L

and

f(x) =
Bx

L
−
∫ L

0
K(x, t)g(t) dt.

This time we have a non-homogeneous Fredholm equation (which becomes homogeneous
when f = 0 on [0, L]). We will come across this type of kernel again in our discussion of
Green’s functions: note that the form of K(x, t) ‘changes’ along the line x = t.

It is important to notice that, not only can the original differential equation be
recovered from the integral equations (2), (4) by differentiation, but that, so can the
initial and boundary conditions. Demonstration of these facts is left as exercises. �

Exercise 1 Recover y′′ + λy = g(x), y(0) = 0, y′(0) = A from (2), using differentiation and [G]
of Chapter 0.

Exercise 2 Solve the integral equation

y(x) = ex + 4
∫ x

0

(x − t)y(t) dt

by first converting it to a differential equation with appropriate initial conditions.

Exercise 3 Suppose that p is a continuously differentiable function, nowhere zero on [a, b], and
define

P (x) =
∫ x

a

dt

p(t)
, (x ∈ [a, b]).
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10 Chapter 1: Integral Equations and Picard’s Method

Show that a solution of the differential equation

d

dx
(p(x)y′) = q(x)y + g(x),

(where q and g are continuous functions on [a, b]), with initial conditions y(a) = A, y′(a) = B,
satisfies the Volterra integral equation

y(x) = f(x) +
∫ x

a

K(x, t)y(t) dt, (x ∈ [a, b]),

where
K(x, t) = q(t)(P (x) − P (t)),

and

f(x) = A + Bp(a)P (x) +
∫ x

a

(P (x) − P (t))g(t) dt.

Deduce that a solution of the equation

xy′′ − y′ − x2y = 8x3,

with initial conditions y(1) = 1, y′(1) = 4, satisfies the equation

y(x) = x4 + 1
2

∫ x

1

(x2 − t2)y(t) dt, (x ≥ 1).

Exercise 4 Find all the continuous eigenfunctions and the corresponding eigenvalues of the
homogeneous Fredholm equation

y(x) = λ

∫ 1

0

K(x, t)y(t) dt,

where

K(x, t) =

{
x(1 − t) when 0 ≤ x ≤ t ≤ 1

t(1 − x) when 0 ≤ t ≤ x ≤ 1

by first converting it to a differential equation with appropriate boundary conditions.

Exercise 5 The thrice continuously differentiable real-valued function y = y(x) satisfies the
differential equation y′′′ = f and is subject to the conditions y(0) = y(1) = y(2) = 0. By
performing three integrations, show that a solution of the equation may be written,

y(x) =
∫ 2

0

L(x, t)f(t) dt,

for appropriate L(x, t). You should determine such an L(x, t).
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1.2 Picard’s method 11

1.2 Picard’s method

In this section, we shall describe Picard’s method, as used in the construction of a unique
solution of an integral equation. This involves the construction of a sequence (yn) of
functions and, correspondingly, an infinite series Σun, where each un is defined by

un = yn − yn−1, (n = 1, 2, . . .).

The Weierstrass M-test ([H] of Chapter 0) is used to show that the series is uniformly
convergent to a function u. But notice that the N -th partial sum of the series is

N∑
n=1

(yn − yn−1) = yN − y0.

So, the sequence (yn) is uniformly convergent to u + y0, which turns out (using the
uniform convergence) to be the (unique) solution of the given integral equation.

We shall now put some clothes on this bare model by considering the Volterra integral
equation,

y(x) = f(x) +
∫ x

a
K(x, t)y(t) dt, (x ∈ [a, b])

where f is continuous on [a, b] and K and
∂K

∂x
are continuous on [a, b]2 (it is actually suffi-

cient for K and
∂K

∂x
to be continuous on the triangular region {(x, t) : a ≤ t ≤ x ≤ b}).

We show that the integral equation has a unique continuous solution.
Inductively, we first define the sequence (yn) ‘by iteration’: put

(5) y0(x) = f(x), (x ∈ [a, b])

which is continuous by hypothesis, and suppose that yk (1 ≤ k ≤ n−1) has been defined
as a continuous function on [a, b] by the formula

yk(x) = f(x) +
∫ x

a
K(x, t)yk−1(t) dt.

Then for each x in [a, b], K(x, t)yn−1(t) is a continuous, and hence integrable, function
of t on [a, x]. So, we may define

(6) yn(x) = f(x) +
∫ x

a
K(x, t)yn−1(t) dt, (x ∈ [a, b]).
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12 Chapter 1: Integral Equations and Picard’s Method

By [G] of Chapter 0, the integral in (6) is a differentiable, and therefore continuous,
function of x on [a, b] and thus an inductive definition of the sequence (yn) of functions
continuous on [a, b] via formulas (5) and (6) is complete. Second, we find non-negative
constants Mn such that

|un(x)| = |yn(x) − yn−1(x)| ≤ Mn,

for all n ∈ N and all x ∈ [a, b], with

∞∑
n=1

Mn convergent.

Again we proceed by induction. We start by noting that, as K and f are continuous
functions defined on, respectively, [a, b]2 and [a, b], K and f are bounded (by [A] of
Chapter 0). Suppose that

|K(x, t)| ≤ L, |f(x)| ≤ M for all x, t ∈ [a, b],

where L,M are non-negative constants. For the first step in the induction, we have

|y1(x) − y0(x)| =
∣∣∣∣
∫ x

a
K(x, t)y0(t) dt

∣∣∣∣
≤

∫ x

a
|K(x, t)||y0(t)| dt (by [D] of Chapter 0)

≤ LM(x − a)

for all x in [a, b]. For an inductive hypothesis, we take

(7) |yn−1(x) − yn−2(x)| ≤ Ln−1M
(x − a)n−1

(n − 1)!
, for all x ∈ [a, b],

where n ≥ 2. (The curious reader may wonder how one might ab initio strike on such a
hypothesis: he is referred to Exercise 6 below.)
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1.2 Picard’s method 13

Then, again using [D] of Chapter 0,

|yn(x) − yn−1(x)| =
∣∣∣∣
∫ x

a
K(x, t){yn−1(t) − yn−2(t)} dt

∣∣∣∣
≤

∫ x

a
|K(x, t)||yn−1(t) − yn−2(t)| dt

≤
∫ x

a
L.Ln−1M

(t − a)n−1

(n − 1)!
dt

= LnM
(x − a)

n!

n

for all x in [a, b]. One should note that, in the middle of this argument, one substitutes
a bound for |yn−1 − yn−2| as a function of t and not of x. This is what gives rise to the
‘exponential term’ (x−a)n/n! (As will be discovered below, the fixed limits of integration
in the analogous Fredholm equation give rise to a term of a geometric series.) Having
inductively found bounds for all the |yn − yn−1| over [a, b] we can now define the non-
negative constants Mn as follows:

|yn(x) − yn−1(x)| ≤ LnM
(x − a)

n!

n

≤ LnM
(b − a)n

n!
≡ Mn

for n ≥ 1. Now,

∞∑
n=1

Mn = M
∞∑

n=1

{L(b − a)}n

n!
= M(eL(b−a) − 1),

the exponential series for ex being convergent for all values of its argument x. So, all the
hypotheses for the application of the Weierstrass M-test ([H] of Chapter 0) are satisfied
and we can deduce that

∞∑
n=1

(yn − yn−1)

is uniformly convergent on [a, b], to u : [a, b] → R, say. Then, as we showed above in our
general discussion, the sequence (yn) converges uniformly to y ≡ u + y0 on [a, b], which
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14 Chapter 1: Integral Equations and Picard’s Method

must be continuous on [a, b], since every yn is (use [I](a) of Chapter 0). Hence, given
ε > 0, there exists N such that

|y(x) − yn(x)| < ε, for all n ≥ N and all x ∈ [a, b].

So,

|K(x, t)y(t) − K(x, t)yn(t)| ≤ Lε, for all n ≥ N and all x, t ∈ [a, b].

So, the sequence (K(x, t)yn(t)) converges uniformly, as a function of t, to K(x, t)y(t).
Therefore, by [I](a) of Chapter 0,

∫ x

a
K(x, t)yn(t) dt converges to

∫ x

a
K(x, t)y(t) dt.

Letting n tend to infinity in (6), we have shown the existence of a continuous solution
y = y(x) of the given integral equation.

To proceed to a proof of uniqueness of the continuous solution, we suppose that there
exists another such solution Y = Y (x). The continuous function y − Y is bounded on
[a, b] (by [A] of Chapter 0). Suppose that

|y(x) − Y (x)| ≤ P, for all x ∈ [a, b],

where P is a non-negative constant, Then, as both y and Y satisfy the integral equation,

|y(x) − Y (x)| =
∣∣∣∣
∫ x

a
K(x, t)(y(t) − Y (t)) dt

∣∣∣∣
≤

∫ x

a
|K(x, t)||y(t) − Y (t)| dt

≤ LP (x − a), for all x ∈ [a, b].

Inductively, suppose that

|y(x) − Y (x)| ≤ Ln−1P
(x − a)
(n − 1)!

n−1

, for all x ∈ [a, b] and n ≥ 2.
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1.2 Picard’s method 15

Then,

|y(x) − Y (x)| =
∣∣∣∣
∫ x

a
K(x, t)(y(t) − Y (t)) dt

∣∣∣∣
≤

∫ x

a
L.Ln−1P

(t − a)n−1

(n − 1)!
dt

= LnP
(x − a)

n!

n

, for all x ∈ [a, b].

So,

|y(x) − Y (x)| ≤ LnP
(b − a)

n!

n

, for all x ∈ [a, b] and n = 1, 2, . . .

and, since the right hand side of the inequality tends to 0 as n → ∞,

y(x) = Y (x), for all x ∈ [a, b]. �

Digression on existence and uniqueness

The reader may wonder about the need or usefulness of such results as the above which
establish the existence and uniqueness of a solution of, in this case, an integral equation.
Why will a list of methods for solving particular kinds of equations, as a student is often
encouraged to acquire, not suffice? The fact is that a number of equations, quite simple
in form, do not possess solutions at all. An existence theorem can ensure that the seeker’s
search for a solution may not be fruitless. Sometimes one solution of a given equation is
easy to find. Then a uniqueness theorem can ensure that the success so far achieved is
complete, and no further search is needed.

One further word on the proof of existence theorems is in order here. There is no
reason why such a proof should indicate any way in which one can actually find a solution
to a given equation, and it often does not. However, many existence proofs do actually
provide a recipe for obtaining solutions. The proof above does in fact provide a useful
method which the reader should employ in completing Exercise 7 below.

Exercise 6 Calculate bounds for |y2(x) − y1(x)| and |y3(x) − y2(x)| to convince yourself of the
reasonableness of the inductive hypothesis (7) in the above proof.

Exercise 7 Find the Volterra integral equation satisfied by the solution of the differential
equation

y′′ + xy = 1,
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16 Chapter 1: Integral Equations and Picard’s Method

with initial conditions y(0) = y′(0) = 0. Use the above iterative method as applied to this integral
equation to show that the first two terms in a convergent series expansion for this solution are

1
2

x2 − 1
40

x5.

Be careful to prove that no other term in the expansion will contain a power of x less than or
equal to 5.

Picard’s method can also be applied to the solution of the Fredholm equation

(8) y(x) = f(x) + λ

∫ b

a
K(x, t)y(t) dt,

where f is continuous on [a, b] and K continuous on [a, b]2. On this occasion, the iterative
procedure

y0(x) = f(x)

yn(x) = f(x) + λ

∫ b

a
K(x, t)yn−1(t) dt, (n ≥ 1)

(9)

for all x in [a, b], gives rise (as the reader is asked to check) to the bound-inequalities

|yn(x) − yn−1(x)| ≤ |λ|nLnM(b − a)n ≡ Mn

for all n ≥ 1 and all x ∈ [a, b], where |K| ≤ L, |f | ≤ M , say. The series

∞∑
n=1

Mn

is geometric with common ratio |λ|L(b − a), and so converges if |λL(b − a)| < 1, that is,
if

(10) |λ| <
1

L(b − a)
,

assuming L > 0 and b > a, strictly. This additional sufficient condition ensures that
a solution to the integral equation exists. The details of the remainder of the proof of
existence and uniqueness here parallel those for the Volterra equation, and the reader is
asked to supply them and note the differences.

No claim has been made above that the bound given for |λ| is the best, that is, the
largest, to ensure existence of a solution. We shall return to this point later during our
discussion of the Fredholm Alternative.
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1.2 Picard’s method 17

Exercise 8 Suppose that

y(x) = 1 +
∫ x

0

e−t/xy(t) dt

for x > 0 and that y(0) = 1. Show that the sequence (yn)n≥0 produced by Picard iteration is
given by

y0(x) = 1

yn(x) = 1 +
n∑

j=1

ajx
j , (n ≥ 1)

for x ≥ 0, where

a1 =
∫ 1

0

e−s ds

and

an = an−1

∫ 1

0

sn−1e−s ds (n ≥ 2).

Exercise 9 For each of the following Fredholm equations, calculate the sequence (yn)n≥0

produced by Picard iteration and the bound on |λ| for which the sequence converges to a
solution (which should be determined) of the integral equation. Compare this bound with the
bound given by the inequality (10) above.

(a) y(x) = x2 + λ

∫ 1

0

x2ty(t) dt (x ∈ [0, 1])

(b) y(x) = sinx + λ

∫ 2π

0

sin(x + t)y(t) dt (x ∈ [0, 2π])
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2 Existence and Uniqueness

We begin this chapter by asking the reader to review Picard’s method introduced in
Chapter 1, with particular reference to its application to Volterra equations. This done,
we may fairly speedily reach the essential core of the theory of ordinary differential
equations: existence and uniqueness theorems.

To see that this work is essential, we need go no further than consider some very
simple problems. For example, the problem of finding a differentiable function y = y(x)
satisfying

y′ = y2 with y(0) = 1

has the solution y = (1 − x)−1 which does not exist at x = 1; in fact, it tends to infinity
(‘blows up’) as x tends to 1.

On the other hand, there are (Exercise 1) an infinite number of solutions of

y′ = 3y
2
3 with y(0) = 0

of which y = 0 identically and y = x3 are the most obvious examples.
Further, most differential equations cannot be solved by performing a sequence of

integrations, involving only ‘elementary functions’: polynomials, rational functions,
trigonometric functions, exponentials and logarithms. The celebrated equation of Riccati,

y′ = 1 + xy2, with y(0) = 0,

is a case in point, amongst the most simple examples. In Exercise 2, the reader is asked
to show that the method of proof of our main theorem provides a practical method of
seeking a solution of this equation. In general, the theorem provides information about
existence and uniqueness without the need for any attempt at integration whatsoever.
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2.1 First-order differential equations in a single
independent variable

We consider the existence and uniqueness of solutions y = y(x) of the differential equation

(1) y′ = f(x, y),

satisfying

(2) y(a) = c,

where a is a point in the domain of y and c is (another) constant. In order to achieve
our aim, we must place restrictions on the function f :

(a) f is continuous in a region U of the (x, y)-plane which contains the rectangle

R = {(x, y) : |x − a| ≤ h, |y − c| ≤ k}
where h and k are positive constants,

(b) f satisfies the following ‘Lipschitz condition’ for all pairs of points (x, y1), (x, y2)
of U :

|f(x, y1) − f(x, y2)| ≤ A|y1 − y2|,

where A is a (fixed) positive constant.

Restriction (a) implies that f must be bounded on R (by [A] of Chapter 0). Letting

M = sup{|f(x, y)| : (x, y) ∈ R},
we add just one further restriction, to ensure, as we shall see, that the functions to be
introduced are well defined:

(c) Mh ≤ k.

We would also make a remark about the ubiquity of restriction (b). Such a Lipschitz

condition must always occur when the partial derivative
∂f

∂y
exists as a bounded function

on U : if a bound on its modulus is P > 0, we can use the Mean Value Theorem of the
differential calculus ([B] of Chapter 0), as applied to f(x, y) considered as a function of
y alone, to write, for some y0 between y1 and y2,

|f(x, y1) − f(x, y2)| =
∣∣∣∣∂f

∂y
(x, y0)

∣∣∣∣ |y1 − y2| ≤ P |y1 − y2|.
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2.1 First-order ordinary differential equations 21

Theorem 1 (Cauchy–Picard) When the restrictions (a), (b), (c) are applied, there
exists, for |x − a| ≤ h, a solution to the problem consisting of the differential equation
(1) together with the boundary condition (2). The solution is unique amongst functions
with graphs lying in U .

Proof We apply Picard’s method (see section 1.2) and define a sequence (yn) of functions
yn : [a − h, a + h] → R by the iteration:

y0(x) = c,

yn(x) = c +
∫ x

a
f(t, yn−1(t)) dt, (n ≥ 1).

As f is continuous, f(t, yn−1(t)) is a continuous function of t whenever yn−1(t) is. So, as
in section 1.2, the iteration defines a sequence (yn) of continuous functions on [a−h, a+h],
provided that f(t, yn−1(t)) is defined on [a − h, a + h]; that is, provided that

|yn(x) − c| ≤ k, for all x ∈ [a − h, a + h] and n = 1, 2, . . .

To see that this is true, we work by induction. Clearly,

|y0(x) − c| ≤ k, for each x ∈ [a − h, a + h].

If |yn−1(x) − c| ≤ k for all x ∈ [a − h, a + h], where n ≥ 1, then f(t, yn−1(t)) is defined
on [a − h, a + h] and, for x in this interval,

|yn(x) − c| =
∣∣∣∣
∫ x

a
f(t, yn−1(t)) dt

∣∣∣∣ ≤ M |x − a| ≤ Mh ≤ k, (n ≥ 1)

where we have used [D] of Chapter 0. The induction is complete.
What remains of the proof exactly parallels the procedure in section 1.2 and the

reader is asked to fill in the details.
We provide next the inductive step of the proof of

|yn(x) − yn−1(x)| ≤ An−1M

n!
|x − a|n, for all x ∈ [a − h, a + h] and all n ≥ 1.

Suppose that

|yn−1(x) − yn−2(x)| ≤ An−2M

(n − 1)!
|x − a|n−1 for all x ∈ [a − h, a + h], where n ≥ 2.
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Then, using the Lipschitz condition (b),

|yn(x) − yn−1(x)| =
∣∣∣∣
∫ x

a
(f(t, yn−1(t)) − f(t, yn−2(t))) dt

∣∣∣∣

≤
∣∣∣∣
∫ x

a
|f(t, yn−1(t)) − f(t, yn−2(t))| dt

∣∣∣∣(3)

≤
∣∣∣∣
∫ x

a
A |yn−1(t) − yn−2(t)| dt

∣∣∣∣

≤ A · An−2M

(n − 1)!

∣∣∣∣
∫ x

a
|t − a|n−1 dt

∣∣∣∣

=
An−1M

n!
|x − a|n, (n ≥ 2)(4)

for every x in [a − h, a + h].

Note The reader may wonder why we have kept the outer modulus signs in (3) above,
after an application of [D] of Chapter 0. The reason is that it is possible for x to be less
than a, while remaining in the interval [a − h, a + h]. Putting

S = f(t, yn−1(t)) − f(t, yn−2(t)), (n ≥ 2)

[D] is actually being applied as follows when x < a:

∣∣∣∣
∫ x

a
S dt

∣∣∣∣ =
∣∣∣∣−

∫ a

x
S dt

∣∣∣∣ =
∣∣∣∣
∫ a

x
S dt

∣∣∣∣ ≤
∫ a

x
|S| dt = −

∫ x

a
|S| dt =

∣∣∣∣
∫ x

a
|S| dt

∣∣∣∣ .
Similarly, for x < a,

∣∣∣∣
∫ x

a
|t − a|n−1 dt

∣∣∣∣ =
∣∣∣∣−

∫ a

x
(a − t)n−1 dt

∣∣∣∣ =
(a − x)n

n
=

|x − a|n
n

,

establishing (4).
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2.1 First-order ordinary differential equations 23

Continuing with the proof and putting, for each n ≥ 1,

Mn =
An−1Mhn

n!
,

we see that we have shown that |yn(x) − yn−1(x)| ≤ Mn for all n ≥ 1 and all x in
[a − h, a + h]. However,

∞∑
n=1

Mn

is a series of constants, converging to

M

A
(eAh − 1).

So, the Weierstrass M-test ([H] of Chapter 0) may again be applied to deduce that the
series ∞∑

n=1

(yn − yn−1),

converges uniformly on [a−h, a+h]. Hence, as in section 1.2, the sequence (yn) converges
uniformly to, say, y on [a−h, a+h]. As each yn is continuous (see above) so is y by [I](a)
of Chapter 0. Further, yn(t) belongs to the closed interval [c − k, c + k] for each n and
each t ∈ [a−h, a+h]. Hence, y(t) ∈ [c−k, c+k] for each t ∈ [a−h, a+h], and f(t, y(t))
is a well-defined continuous function on [a− h, a + h]. Using the Lipschitz condition, we
see that

|f(t, y(t)) − f(t, yn(t))| ≤ A|y(t) − yn(t)| (n ≥ 0)

for each t in [a− h, a + h]; so, the sequence (f(t, yn(t))) converges uniformly to f(t, y(t))
on [a − h, a + h]. Applying [I](a) of Chapter 0,

∫ x

a
f(t, yn−1(t)) dt →

∫ x

a
f(t, y(t)) dt

as n → ∞. So, letting n → ∞ in the equation

yn(x) = c +
∫ x

a
f(t, yn−1(t)) dt

defining our iteration, we obtain

(5) y(x) = c +
∫ x

a
f(t, y(t)) dt.
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24 Chapter 2: Existence and Uniqueness

Note that y(a) = c. As the integrand in the right-hand side is continuous, we may (by
[G] of Chapter 0) differentiate with respect to x to obtain

y′(x) = f(x, y(x)).

Thus y = y(x) satisfies the differential equation (1) together with the condition (2). We
have shown that there exists a solution to the problem.

The uniqueness of the solution again follows the pattern of our work in section 1.2.
If y = Y (x) is a second solution of (1) satisfying (2) with graph lying in U , then as y(x)
and Y (x) are both continuous functions on the closed and bounded interval [a−h, a+h],
there must (by [A] of Chapter 0) be a constant N such that

|y(x) − Y (x)| ≤ N for all x ∈ [a − h, a + h].

Integrating Y ′(t) = f(t, Y (t)) with respect to t, from a to x, we obtain

Y (x) = c +
∫ x

a
f(t, Y (t)) dt,

since Y (a) = c. So, using (5) and the Lipschitz condition made available to us by the
graph of y = Y (x) lying in U ,

|y(x) − Y (x)| =
∣∣∣∣
∫ x

a
(f(t, y(t)) − f(t, Y (t))) dt

∣∣∣∣

≤
∣∣∣∣
∫ x

a
A |y(t) − Y (t)| dt

∣∣∣∣(6)

≤ AN |x − a| , for all t ∈ [a − h, a + h].

We leave it to the reader to show by induction that, for every integer n and every
x ∈ [a − h, a + h],

|y(x) − Y (x)| ≤ AnN

n!
|x − a|n .

As the right-hand side of this inequality may be made arbitrarily small, y(x) = Y (x) for
each x in [a − h, a + h]. Our solution is thus unique. �
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2.1 First-order ordinary differential equations 25

Note (a) For continuous y, the differential equation (1) together with the condition (2)
is equivalent to the integral equation (5).
(b) The analysis is simplified and condition (c) omitted if f is bounded and satisfies the
Lipschitz condition in the strip

{(x, y) : a − h ≤ x ≤ a + h}.

(c) Notice that if the domain of f were sufficiently large and
∂f

∂y
were to exist and be

bounded there, then our work in the paragraph prior to the statement of the theorem
would allow us to dispense with the graph condition for uniqueness.

Exercise 1 Find all the solutions of the differential equation

dy

dx
= 3y2/3

subject to the condition y(0) = 0. Which of the above restrictions does f(x, y) = 3y2/3 not satisfy
and why?

Exercise 2 By applying the method of proof of the above theorem, find the first three (non-zero)
terms in the series expansion of the solution to the Riccati equation

y′ = 1 + xy2

satisfying y(0) = 0.

Exercise 3 Consider the initial value problem of finding a solution y = y(x) in some neighbour-
hood of x = 0 to

dy

dx
= f(x, y), y(0) = c (|x| < L)

where f(x, y) is a continuous bounded real-valued function satisfying the Lipschitz condition

|f(x, y1) − f(x, y2)| ≤ A|y1 − y2| (|x| < L, all y1, y2)

for some positive constant A. For each of the following special cases

f = xy, c = 1(i)

f = xy2, c = 1(ii)

f = xy
1
2 , c = 0(iii)

determine if the Lipschitz condition is satisfied, find all the solutions of the problem and specify
the region of validity of each solution.
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26 Chapter 2: Existence and Uniqueness

Exercise 4 Show that the problem

y′ = f(y), y(0) = 0

has an infinite number of solutions y = y(x), for x ∈ [0, a], if

(i) f(y) =
√

1 + y and a > 2,

or

(ii) f(y) =
√

|y2 − 1| and a >
π

2

[Note that, in case (ii), the function y = y(x) given by

y(x) =

{
sin x (0 ≤ x < 1

2π)

1 ( 1
2π ≤ x ≤ a)

is one solution of the problem.]

2.2 Two simultaneous equations in a single variable

It should be said at the outset that the methods of this section can be applied directly
to the case of any finite number of simultaneous equations. The methods involve a
straightforward extension of those employed in the last section and, for this reason,
many of the details will be left for the reader to fill in.

We now seek solutions y = y(x), z = z(x) of the simultaneous differential equations

(7) y′ = f(x, y, z), z′ = g(x, y, z)

which satisfy

(8) y(a) = c, z(a) = d,

where a is a point in the domains of y and z, c and d are also constants, and where

(d) f and g are continuous in a region V of (x, y, z)-space which contains the cuboid

S = {(x, y, z) : |x − a| ≤ h, max(|y − c|, |z − d|) ≤ k}

where h, k are non-negative constants,

(e) f and g satisfy the following Lipschitz conditions at all points of V :

|f(x, y1, z1) − f(x, y2, z2)| ≤ A max(|y1 − y2|, |z1 − z2|)

|g(x, y1, z1) − g(x, y2, z2)| ≤ B max(|y1 − y2|, |z1 − z2|)
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2.2 Simultaneous first-order equations 27

where A and B are positive constants,

(f) max(M, N) . h ≤ k,

where M = sup{|f(x, y, z)| : (x, y, z) ∈ S} and N = sup{|g(x, y, z)| : (x, y, z) ∈ S}.

It is convenient (especially in the n-dimensional extension!) to employ the vector
notation

y = (y, z), f = (f, g), c = (c, d), A = (A, B), M = (M,N).

The reader can then easily check that, with use of the ‘vector norm’,

|y| = max(|y|, |z|),

where y = (y, z), the above problem reduces to

(7′) y′ = f(x,y),

satisfying

(8′) y(a) = c

where

(d′) f is continuous in a region V containing

S = {(x,y) : |x − a| ≤ h, |y − c| ≤ k}

(e′) f satisfies the Lipschitz condition at all points of V :

|f(x,y1) − f(x,y2)| ≤ |A||y1 − y2|,
and

(f′) |M|h ≤ k.

The existence of a unique solution to (7′) subject to (8′) can now be demonstrated
by employing the methods of section 2.1 to the iteration

y0(x) = c,

yn(x) = c +
∫ x

a
f(t,yn−1(t)) dt, (n ≥ 1)

(9)

We thus have the following extension of Theorem 1.
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28 Chapter 2: Existence and Uniqueness

Theorem 2 When the restrictions (d), (e), (f) are applied, there exists, for |x−a| ≤ h, a
solution to the problem consisting of the simultaneous differential equations (7) together
with the boundary conditions (8). The solution is unique amongst functions with graphs
lying in V .

Exercise 5 Consider the problem consisting of the simultaneous differential equations

y′ = −yz, z′ = z2

which satisfy
y(0) = 2, z(0) = 3.

(i) Use Theorem 2 to prove that there is a unique solution to the problem on an interval
containing 0.

(ii) Find the solution to the problem, specifying where this solution exists.

Exercise 6 Consider the problem

y′ = 2 − yz, z′ = y2 − xz, y(0) = −1, z(0) = 2.

Find the first three iterates y0(x), y1(x), y2(x) in the vector iteration (9) corresponding to this
problem.

Exercise 7 With the text’s notation, prove that, if f = f(x, y, z) = f(x,y) has continuous
bounded partial derivatives in V , then f satisfies a Lipschitz condition on S of the form given in
(e′).
[HINT: Write f(x, y1, z1)− f(x, y2, z2) = f(x, y1, z1)− f(x, y2, z1) + f(x, y2, z1)− f(x, y2, z2) and
use the Mean Value Theorem of the differential calculus ([B] of Chapter 0). ]

Exercise 8 Compare the method employed in the text for solving (7) subject to (8) with that
given by the simultaneous iterations

y0(x) = c,

yn(x) = c +
∫ x

a

f(t, yn−1(t), zn−1(t)) dt,

and

z0(x) = d,

zn(x) = d +
∫ x

a

g(t, yn−1(t), zn−1(t)) dt,

for n ≥ 1 and x ∈ [a − h, a + h]. In particular, find bounds for |y1 − y0|, |y2 − y1| and |y3 − y2|
on [a − h, a + h] in terms of A,B,M,N and h.
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2.3 A second-order equation 29

2.3 A second-order equation

We now use Theorem 2 to find a solution y = y(x) to the problem consisting of the
differential equation

(10)
d2y

dx2
≡ y′′ = g(x, y, y′)

together with the initial conditions

(11) y(a) = c, y′(a) = d, (c, d constants).

(Note that y and y′ are both given at the same point a.)
A problem of the type given by (10) taken together with ‘initial conditions’ (11),

when a solution is only required for x ≥ a, is called an initial value problem (IVP) –
the variable x can be thought of as time (and customarily is then re-named t).

The trick is to convert (10) to the pair of simultaneous equations

(10′) y′ = z, z′ = g(x, y, z),

(the first equation defining the new function z). Corresponding to (11) we have

(11′) y(a) = c, z(a) = d.

We, of course, require certain restrictions on g = g(x, y, z):

(d′′) g is continuous on a region V of (x, y, z)-space which contains

S = {(x, y, z) : |x − a| ≤ h, max(|y − c|, |z − d|) ≤ k}

where h, k are non-negative constants,

(e′′) g satisfies the following Lipschitz condition at all points of V :

|g(x, y1, z1) − g(x, y2, z2)| ≤ B max(|y1 − y2|, |z1 − z2|),

where B is a constant.

Theorem 3 When the restrictions (d′′), (e′′) are imposed, then, for some h > 0, there
exists, when |x − a| ≤ h, a solution to the problem consisting of the second-order
differential equation (10) together with the initial conditions (11). The solution is unique
amongst functions with graphs lying in V .

 EBSCOhost - printed on 4/16/2021 2:10 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



30 Chapter 2: Existence and Uniqueness

The reader should deduce Theorem 3 from Theorem 2. It will be necessary, in parti-
cular, to check that f(x, y, z) = z satisfies a Lipschitz condition on V and that an h can
be found so that (f) of section 2.2 can be satisfied. We should note that the methods of
this section can be extended so as to apply to the nth-order equation

y(n) = f(x, y, y′, . . . , y(n−1)),

when subject to initial conditions

y(a) = c0, y′(a) = c1, . . . , y(n−1)(a) = cn−1.

We conclude our present discussion of the second-order equation by considering the
special case of the non-homogeneous linear equation

(12) p2(x)y′′ + p1(x)y′ + p0(x)y = f(x), (x ∈ [a, b])

where p0, p1, p2, f are continuous on [a, b], p2(x) > 0 for each x in [a, b], and the equation
is subject to the initial conditions

(13) y(x0) = c, y′(x0) = d, (x0 ∈ [a, b]; c, d constants).

Theorem 4 There exists a unique solution to the problem consisting of the linear
equation (12) together with the initial conditions (13).

As continuity of the function

g(x, y, z) =
f(x)
p2(x)

− p0(x)
p2(x)

y − p1(x)
p2(x)

z

is clear, the reader need only check that this same function satisfies the relevant Lipschitz
condition for all x in [a, b]. Note that the various continuous functions of x are bounded
on [a, b]. (No such condition as (f) of section 2.2 is here necessary, nor is the graph
condition of Theorem 3.)

By and large, the differential equations that appear in these notes are linear. It
is of special note that the unique solution obtained for the equation of Theorem 4 is
valid for the whole interval of definition of that linear equation. In our other theorems,
although existence is only given ‘locally’ (for example, where |x − a| ≤ h and Mh ≤ k
in Theorem 1), solutions are often valid in a larger domain. Often the argument used
above to establish uniqueness in a limited domain can be used to extend this uniqueness
to wherever a solution exists.
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Exercise 9 Consider the problem

yy′′ = −(y′)2, y(0) = y′(0) = 1.

(i) Use Theorem 3 to show that the problem has a unique solution on an interval
containing 0.

(ii) Find the solution and state where it exists.
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3 The Homogeneous Linear
Equation and Wronskians

The main aim of this chapter will be to use Theorem 4 of Chapter 2 – and specifically
both existence and uniqueness of solutions – to develop a theory that will describe the
solutions of the homogeneous linear second-order equation

(1) p2(x)y′′ + p1(x)y′ + p0(x)y = 0, (x ∈ [a, b])

where p0, p1, p2 are continuous real-valued functions on [a, b] and p2(x) > 0 for each x in
[a, b]. (‘Homogeneous’ here reflects the zero on the right-hand side of the equation which
allows λy to be a solution (for any real constant λ) whenever y is a given solution.) The
language of elementary linear algebra will be used and the theory of simultaneous linear
equations will be presumed.

Central to our discussion will be the Wronskian, or Wronskian determinant: if
y1 : [a, b] → R and y2 : [a, b] → R are differentiable functions on the closed interval
[a, b], the Wronskian of y1 and y2, W (y1, y2) : [a, b] → R, is defined, for x ∈ [a, b], by

(2) W (y1, y2)(x) =

∣∣∣∣∣∣
y1(x) y2(x)

y′1(x) y′2(x)

∣∣∣∣∣∣ = y1(x)y′2(x) − y′1(x)y2(x).

If y1 and y2 are solutions of (1), it will turn out that either W (y1, y2) is identically zero
or never zero in [a, b].
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3.1 Some linear algebra

Suppose that yi : [a, b] → R and that ci is a real constant, for i = 1, . . . , n. By

c1y1 + . . . + cnyn = 0

is meant
c1y1(x) + . . . + cnyn(x) = 0 for each x in [a, b].

We may describe this situation by saying that

c1y1 + . . . + cnyn or
n∑

i=1

ciyi is identically zero on [a, b].

If yi : [a, b] → R for i = 1, . . . , n, the set {y1, . . . , yn} is linearly dependent on [a, b] if
and only if there are real constants c1, . . . , cn, not all zero, such that

c1y1 + . . . + cnyn = 0.

Otherwise, the set is linearly independent on [a, b]. So, {y1, . . . , yn} is linearly independent
on [a, b] if and only if

c1y1 + . . . + cnyn = 0,

with c1, . . . , cn real constants, necessitates

c1 = . . . = cn = 0.

It is a common abuse of language to say that y1, . . . , yn are linearly dependent (or
independent) when one means that the set {y1, . . . , yn} is linearly dependent (indepen-
dent). We shall find ourselves abusing language in this manner.

We now turn to stating some elementary results relating to solutions {x1, . . . , xn} of
the system of simultaneous linear equations

a11x1 + . . . + a1nxn = 0
...

...
...

am1x1 + . . . + amnxn = 0

where aij is a real constant for i = 1, . . . , m and j = 1, . . . , n.
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(a) When m = n, the system has a solution other than the ‘zero solution’

x1 = . . . = xn = 0

if and only if the ‘determinant of the coefficients’ is zero, that is,

∣∣∣∣∣∣∣
a11 . . . a1n
...

...
an1 . . . ann

∣∣∣∣∣∣∣ = 0.

(b) When m < n, the system has a solution other than the zero solution.

We conclude this section with an application of result (a), which will give us our first
connection between linear dependence and Wronskians.

Proposition 1 If y1, y2 are differentiable real-valued functions, linearly dependent on
[a, b], then W (y1, y2) is identically zero on [a, b].

Proof As y1, y2 are linearly dependent, there are real constants c1, c2, not both zero,
such that

(3) c1y1(x) + c2y2(x) = 0, for each x in [a, b].

Differentiating with respect to x we have

(4) c1y
′
1(x) + c2y

′
2(x) = 0, for each x in [a, b].

Treat the system consisting of (3) and (4) as equations in c1 and c2 (in the above notation,
take x1 = c1, x2 = c2, a11 = y1(x), a12 = y2(x), a21 = y′1(x), a22 = y′2(x)). Since c1

and c2 are not both zero, we may use result (a) to deduce that the determinant of the
coefficients of c1 and c2 is zero. However, this determinant is precisely W (y1, y2)(x), the
Wronskian evaluated at x. We have thus shown that W (y1, y2)(x) = 0, for each x in
[a, b]; that is, that W (y1, y2) is identically zero on [a, b]. �

The converse of Proposition 1 does not hold: the reader is asked to demonstrate this
by providing a solution to the second exercise below.

Exercise 1 If y1(x) = cos x and y2(x) = sin x for x ∈ [0, π/2], show that {y1, y2} is linearly
independent on [0, π/2].
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Exercise 2 Define y1 : [−1, 1] → R, y2 : [−1, 1] → R by

y1(x) = x3, y2(x) = 0 for x ∈ [0, 1],

y1(x) = 0, y2(x) = x3 for x ∈ [−1, 0].

Show that y1 and y2 are twice continuously differentiable functions on [−1, 1], that W (y1, y2) is
identically zero on [−1, 1], but that {y1, y2} is linearly independent on [−1, 1].

3.2 Wronskians and the linear independence of solutions of
the second-order homogeneous linear equation

We commence this section with an elementary result which is useful in any discussion of
homogeneous linear equations. The proof is left to the reader.

Proposition 2 If y1, . . . , yn are solutions of (1) and c1, . . . , cn are real constants, then

c1y1 + . . . + cnyn

is also a solution of (1).

We now show that the converse of Proposition 1 holds when y1 and y2 are solutions
of (1). The result we prove looks at first sight (and misleadingly) stronger.

Proposition 3 If y1, y2 are solutions of the linear equation (1) and if W (y1, y2)(x0) = 0
for some x0 in [a, b], then y1 and y2 are linearly dependent on [a, b] (and hence W (y1, y2)
is identically zero on [a, b]).

Proof Consider the following system as a pair of equations in c1 and c2:

(5)
c1y1(x0) + c2y2(x0) = 0,

c1y
′
1(x0) + c2y

′
2(x0) = 0.

(Note that y′1(x0), y′2(x0) exist, as y1, y2 both solve (1) and hence even have second
derivatives.) The determinant of the coefficients, here W (y1, y2)(x0), is zero. So, using
result (a) of section 3.1, there is a solution

(6) c1 = C1, c2 = C2

with C1, C2 not both zero.

 EBSCOhost - printed on 4/16/2021 2:10 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



3.2 Wronskians and linear independence 37

Proposition 2 allows us to conclude that the function y : [a, b] → R defined by

y(x) = C1y1(x) + C2y2(x), (x ∈ [a, b])

is a solution of (1). But notice that equations (5), taken with the solution (6), state that

(7) y(x0) = y′(x0) = 0.

One solution of (1) together with the initial conditions (7) is clearly y = 0 identically on
[a, b]. By Theorem 4 of Chapter 2, there can be no others; and so, necessarily,

C1y1 + C2y2 = 0

identically on [a, b]. Recalling that not both of C1 and C2 are zero, we have shown that
y1 and y2 are linearly dependent on [a, b]. �

Propositions 1 and 3 are so important that we re-state them together as the following
proposition.

Proposition 4 Suppose that y1 and y2 are solutions of the linear equation (1). Then

(a) W (y1, y2) is identically zero on [a, b] or never zero on [a, b];
(b) W (y1, y2) is identically zero on [a, b] if and only if y1 and y2 are linearly dependent
on [a, b].

A proof similar to that of Proposition 3 establishes the following result which shows that
we can never have more than two solutions to (1) which are linearly independent on [a, b].

Proposition 5 If n > 2 and y1, . . . , yn are solutions of (1), then {y1, . . . , yn} is a linearly
dependent set on [a, b].

Proof Pick x0 in [a, b] and consider the pair of equations

c1y1(x0) + . . . + cnyn(x0) = 0

c1y
′
1(x0) + . . . + cny′n(x0) = 0

in c1, . . . , cn. As n > 2, result (b) of the last section implies that there is a solution

c1 = C1, . . . , cn = Cn

with C1, . . . , Cn not all zero.
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38 Chapter 3: The Homogeneous Linear Equation and Wronskians

Using Proposition 2 above and Theorem 4 of Chapter 2, we deduce, as in the proof
of Proposition 3, that

C1y1 + . . . + Cnyn = 0

identically on [a, b] and hence that y1, ..., yn are linearly dependent on [a, b]. �

We conclude our discussion of the solution of (1) by using Wronskians to show that
this linear equation actually possesses two linearly independent solutions.

Proposition 6 There exist two solutions y1, y2 of (1) which are linearly independent on
[a, b]. Further, any solution y of (1) may be written in terms of y1 and y2 in the form

(8) y = c1y1 + c2y2,

where c1 and c2 are constants.

Proof Pick x0 in [a, b]. The existence part of Theorem 4 of Chapter 2 produces a solution
y1 of (1) satisfying the initial conditions

y1(x0) = 1, y′1(x0) = 0.

Similarly, there is a solution y2 of (1) satisfying

y2(x0) = 0, y′2(x0) = 1.

As W (y1, y2)(x0) = 1, we may use Proposition 1 to deduce that y1 and y2 are linearly
independent on [a, b].

If y is any solution of (1) then {y, y1, y2} is linearly dependent on [a, b] by Proposition
5. So, there are constants c, c′1, c′2 not all zero, such that

cy + c′1y1 + c′2y2 = 0.

The constant c must be non-zero; for otherwise,

c′1y1 + c′2y2 = 0,

which would necessitate, as {y1, y2} is linearly independent, c′1 = c′2 = 0, contradicting
the fact that not all of c, c′1, c′2 are zero. We may therefore define c1 = −c′1/c and
c2 = −c′2/c to give

y = c1y1 + c2y2. �
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Note There are other ways of proving the propositions of this chapter. The proofs here
have been chosen as they can be extended directly to cover the case of the n-th order
homogeneous linear equation.

Exercise 3 Find the Wronskian W (y1, y2) corresponding to linearly independent solutions y1, y2

of the following differential equations in y = y(x), satisfying the given conditions. Methods for
solving the equations may be found in the Appendix.

y′′ = 0, y1(−1) = y2(1) = 0(a)

y′′ − y = 0, y1(0) = y′
2(0) = 0(b)

y′′ + 2y′ + (1 + k2)y = 0, y1(0) = y2(π) = 0, for k > 0,(c)

x2y′′ + xy′ − k2y = 0, y1(1) = y2(2) = 0, for x, k > 0.(d)

(Note that the value of the Wronskian may still depend on constants of integration.)

Exercise 4 By considering (separately) the differential equations

y′′ + y2 = 0, y′′ = 1,

show that linearity and homogeneity of (1) are necessary hypotheses in Proposition 2.

Exercise 5 Suppose that y1, y2 are solutions of (1). Show that the Wronskian W = W (y1, y2)
is a solution of the differential equation

(9) p2(x)W ′ + p1(x)W = 0, (x ∈ [a, b]).

Exercise 6 By first solving (9) of Exercise 5, give an alternative proof of Proposition 4(a).

Exercise 7 Show that at least one of the components of one of the solutions (y, z) of the simul-
taneous equations

dz

dx
= α

df

dx
· dy

dx
− xy, f(x)

dy

dx
= z,

where f(x) is continuous, everywhere positive, and unbounded as x → ∞, is unbounded as x → ∞
if α > 0.

[HINT: Form a second order equation for y and then solve the corresponding equation (9) for the
Wronskian of its solutions.]
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40 Chapter 3: The Homogeneous Linear Equation and Wronskians

Exercise 8 Describe how equation (9) of Exercise 5 may be used to find the general solution of
(1) when one (nowhere zero) solution y = u is known. Compare this method with the one given
in section (5) of the Appendix by showing that, if y = u and y = uv are solutions of (1), then (9)
for W = W (u, uv) gives rise to

p2u
2v′′ + (2uu′p2 + p1u

2)v′ = 0.
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4 The Non-Homogeneous
Linear Equation

In this chapter we shall consider the non-homogeneous second-order linear equation

(1) p2(x)y′′ + p1(x)y′ + p0(x)y = f(x), (x ∈ [a, b])

where f : [a, b] → R and each pi : [a, b] → R are continuous, and p2(x) > 0, for each
x in [a, b]. Any particular solution of (1) (or, indeed, of any differential equation) is
called a particular integral of the equation, whereas the general solution c1y1 + c2y2 of
the corresponding homogeneous equation

(2) p2(x)y′′ + p1(x)y′ + p0(x)y = 0, (x ∈ [a, b])

given by Proposition 6 of Chapter 3 (where y1, y2 are linearly independent solutions
of (2) and c1, c2 are arbitrary real constants) is called the complementary function of
(1). If yP is any particular integral and yC denotes the complementary function of (1),
yC + yP is called the general solution of (1). We justify this terminology by the following
proposition, which shows that, once two linearly independent solutions of (2) are found,
all that remains to be done in solving (1) is to find one particular integral.
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42 Chapter 4: The Non-Homogeneous Linear Equation

Proposition 1 Suppose that yP is any particular integral of the non-homogeneous
linear equation (1) and that y1, y2 are linearly independent solutions of the corresponding
homogeneous equation (2). Then
(a) c1y1 + c2y2 + yP is a solution of (1) for any choice of the constants c1, c2,

(b) if y is any solution (that is, any particular integral) of (1), there exist (particular)
real constants C1, C2 such that

y = C1y1 + C2y2 + yP .

Proof (a) As c1y1 + c2y2 is a solution of (2) for any real choice of c1, c2 by Proposition
2 of Chapter 3, all we need to show is that, if Y is a solution of (2) and yP a solution of
(1), then Y + yP is a solution of (1). In these circumstances, we have

p2Y
′′ + p1Y

′ + p0Y = 0
and

(3) p2y
′′
P + p1y

′
P + p0yP = f.

By adding,
p2(Y + yP )′′ + p1(Y + yP )′ + p0(Y + yP ) = f ;

and thus, Y + yP is a solution of (1) as required.

(b) As well as (3) above, we are given that

(4) p2y
′′ + p1y

′ + p0y = f.

Subtracting,

p2(y − yP )′′ + p1(y − yP )′ + p0(y − yP ) = 0;

so that, y − yP solves (2). Proposition 6 of Chapter 3 then finds real constants C1, C2

such that
y − yP = C1y1 + C2y2.

The proposition is established. �
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4.1 The method of variation of parameters

The reader will probably already have encountered methods for finding particular
integrals for certain (benign!) functions f(x) occurring on the right-hand side of equation
(1). This section produces a systematic method for finding particular integrals once one
has determined two linearly independent solutions of (2), that is, once one has already
determined the complementary function of (1).

All there really is to the method is to note that, if y1, y2 are linearly independent
solutions of (2), then a particular integral of (1) is k1y1 + k2y2, where ki : [a, b] → R

(i = 1, 2) are the continuously differentiable functions on [a, b] defined, for any real
constants α, β in [a, b], by

(5) k1(x) = −
∫ x

α

y2(t)f(t)
p2(t)W (t)

dt, k2(x) =
∫ x

β

y1(t)f(t)
p2(t)W (t)

dt, (x ∈ [a, b])

where
W = W (y1, y2) ≡ y1y

′
2 − y2y

′
1

is the Wronskian of y1 and y2. (Notice that W (t) �= 0 for each t in [a, b] because y1, y2

are linearly independent.) To see that this is true, we differentiate k1 and k2 as given by
(5):

k′
1(x) = − y2(x)f(x)

p2(x)W (x)
, k′

2(x) =
y1(x)f(x)
p2(x)W (x)

, (x ∈ [a, b])

and notice that k′
1, k

′
2 must therefore satisfy the simultaneous linear equations

k′
1(x)y1(x) + k′

2(x)y2(x) = 0,

k′
1(x)y′1(x) + k′

2(x)y′2(x) = f(x)/p2(x).
(x ∈ [a, b])(6)

(The reader should check this.) Hence, putting

y = k1y1 + k2y2,

we have
y′ = k1y

′
1 + k2y

′
2

and
y′′ = k1y

′′
1 + k2y

′′
2 + f/p2.

 EBSCOhost - printed on 4/16/2021 2:10 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use
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So,

p2y
′′ + p1y

′ + p0y = k1(p2y
′′
1 + p1y

′
1 + p0y1) + k2(p2y

′′
2 + p1y

′
2 + p0y2) + f = f,

since y1, y2 solve (2). Thus, y = k1y1 + k2y2 solves (1) and the general solution of (1) is

(7) y(x) = c1y1(x) + c2y2(x) −
∫ x

α

y1(x)y2(t)
p2(t)W (t)

f(t) dt +
∫ x

β

y1(t)y2(x)
p2(t)W (t)

f(t) dt

where c1 and c2 are real constants and x ∈ [a, b].

The constants α, β should not be regarded as arbitrary in the sense that c1, c2 are.
Rather, they should be considered as part of the definition of k1 and k2. Notice that, if
y = y(x) is the particular integral given by formula (7) with c1 = C1 and c2 = C2, and
if α′, β′ are in [a, b] then

y(x) = C ′
1y1(x) + C ′

2y2(x) −
∫ x

α′

y1(x)y2(t)
p2(t)W (t)

f(t) dt +
∫ x

β′

y1(t)y2(x)
p2(t)W (t)

f(t) dt

for each x in [a, b], where C ′
1, C

′
2 are the constants given by

(8) C ′
1 = C1 −

∫ α′

α

y2(t)f(t)
p2(t)W (t)

dt, C ′
2 = C2 +

∫ β′

β

y1(t)f(t)
p2(t)W (t)

dt.

Thus, changes in α, β just make corresponding changes in C1, C2.
An appropriate choice of α, β can often depend on conditions applied to the solution

of (1).

(a) Initial conditions Suppose we are given values for y(a) and y′(a). Then it can be
most convenient to choose α = β = a. The particular integral in (7) is then

(9)
∫ x

a

(y1(t)y2(x) − y1(x)y2(t))
p2(t)W (t)

f(t) dt =
∫ x

a

(y1(t)y2(x) − y1(x)y2(t))f(t)
(y1(t)y′2(t) − y2(t)y′1(t))p2(t)

dt.

The reader should check that this particular integral and its derivative with respect to x
are both zero at x = a. This is technically useful when given the above initial conditions,
making it easier to calculate the constants c1, c2 in this case.

(b) Boundary conditions Suppose now that we are given values for y(a) and y(b).
Convenient choices for α, β are often α = b, β = a. The particular integral then becomes
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(10)
∫ b

x

y1(x)y2(t)
p2(t)W (t)

f(t) dt +
∫ x

a

y1(t)y2(x)
p2(t)W (t)

f(t) dt =
∫ b

a
G(x, t)f(t) dt,

where

G(x, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y1(x)y2(t)
p2(t)W (t)

, for a ≤ x ≤ t ≤ b,

y1(t)y2(x)
p2(t)W (t)

, for a ≤ t ≤ x ≤ b.

Notice that, at x = a, the first integral on the left-hand side of (10) is a multiple of y1(a)
and the second integral vanishes. At x = b, it is the first integral that vanishes and the
second is a multiple of y2(b). This can be especially useful if the linearly independent
functions y1, y2 can be chosen so that y1(a) = y(a) and y2(b) = y(b). We shall return to
these matters and the function G = G(x, t) in our discussion of Green’s functions in the
next section.

An alternative view of the method

A commonly found presentation of the method of variation of parameters is the following.
Suppose that y1 and y2 are linearly independent solutions of (2). As y = c1y1 + c2y2

is a solution (the general solution) of the homogeneous equation (2), ‘it is natural’ to
seek a solution to the non-homogeneous equation (1) by ‘varying the parameters’ c1 and
c2. So, we seek functions k1, k2 such that y = k1y1 + k2y2 is a particular solution of (1)
(where k1 and k2 are continuously differentiable). Then

(11) y′ = k1y
′
1 + k2y

′
2 + k′

1y1 + k′
2y2.

The next step in the argument is to stipulate that k1 and k2 are to be chosen in order
that

(12) k′
1y1 + k′

2y2 = 0.

(Yes, this is possible! We are often told that there is sufficient freedom in our choice
of k1 and k2 to allow this and hence, of course, to simplify the subsequent ‘working’.)
Differentiating again and using (12),

(13) y′′ = k1y
′′
1 + k2y

′′
2 + k′

1y
′
1 + k′

2y
′
2.
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46 Chapter 4: The Non-Homogeneous Linear Equation

In order to derive a further condition to permit y = k1y1+k2y2 to be a solution to (1), we
must substitute for this y, for y′ given by (11) subject to (12), and for y′′ given by (13)
in equation (1). The reader should check that, since y1 and y2 solve (2), it is necessary
that

(14) k′
1y

′
1 + k′

2y
′
2 = f/p2.

Equations (12) and (14) are of course just equations (6). These may be solved for k′
1

and k′
2 as the determinant of the coefficients is the Wronskian W (y1, y2) of the linearly

independent solutions y1, y2 and hence is non-zero everywhere in [a, b]. Reversing steps
in our earlier discussion of the method,

k1(x) − k1(α) = −
∫ x

α

y2(t)f(t)
p2(t)W (t)

dt, k2(x) − k2(β) =
∫ x

β

y1(t)f(t)
p2(t)W (t)

dt

for each x in [a, b]. Thus, the general solution of (1) is given by

y(x) = c1y1(x) + c2y2(x) + k1(x)y1(x) + k2(x)y2(x)

= c′1y1(x) + c′2y2(x) −
∫ x

α

y1(x)y2(t)
p2(t)W (t)

f(t) dt +
∫ x

β

y1(t)y2(x)
p2(t)W (t)

f(t) dt

where c′1 = c1 + k1(α) and c′2 = c2 + k2(β) are constants and x ∈ [a, b].
This alternative view of the variation of parameters method does not present a purely

deductive argument (in particular, it is necessary to stipulate (12)), but the reader may
care to use it to aid his recall of k1 and k2 as defined in (5). The condition (12) will then
need to be remembered!

It is our experience that computational errors in applying the method to practical
problems are more easily avoided by deducing the general formula (7) before introducing
particular functions y1, y2 and calculating W (y1, y2).

It is also worth recalling that the variation of parameters particular integral is only
one of many possible particular integrals. Practically, one should see if a particular
integral can be more easily found otherwise. The Green’s function method described in
the next section, when applicable, is remarkably efficient.
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Exercise 1 Check the following details:

(a) that equations (6) are satisfied by k′
1(x) and k′

2(x),

(b) that the values given for C ′
1 and C ′

2 in (8) are correct,

(c) that the integral (9) and its derivative with respect to x are both zero at x = a.

Use the method of variation of parameters to solve the following three problems.

Exercise 2 Find the general solution of y′′ + y = tan x, 0 < x < π/2.

Exercise 3 Show that the solution of the equation

y′′ + 2y′ + 2y = f(x),

with f continuous and initial conditions y(0) = y′(0) = 1, can be written in the form

y(x) = e−x(cos x + 2 sinx) +
∫ x

0

e−(x−t) sin(x − t)f(t) dt.

Exercise 4 Find the necessary condition on the continuous function g for there to exist a solution
of the equation

y′′ + y = g(x),

satisfying y(0) = y(π) = 0.

Exercise 5 The function y = y(x) satisfies the homogeneous differential equation

y′′ + (1 − h(x))y = 0, (0 ≤ x ≤ K)

where h is a continuous function and K is a positive constant, together with the initial conditions
y(0) = 0, y′(0) = 1. Using the variation of parameters method, show that y also satisfies the
integral equation

y(x) = sinx +
∫ x

0

y(t)h(t) sin(x − t) dt (0 ≤ x ≤ K).

If |h(x)| ≤ H for 0 ≤ x ≤ K and some positive constant H, show that

|y(x)| ≤ eHx (0 ≤ x ≤ K).

[HINTS: Re-write the differential equation in the form

y′′ + y = h(x)y.

For the last part, use Picard’s iterative method described in Chapter 1.]
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48 Chapter 4: The Non-Homogeneous Linear Equation

4.2 Green’s functions

Up to this point, in order to find the solution of a problem consisting of a differential
equation together with initial or boundary conditions, we have first found a general
solution of the equation and later fitted the other conditions (by finding values for
constants occurring in the general solution in order that the conditions be met). The
method produced by the theorem of this section builds the boundary condition into
finding the solution from the start.

Theorem 1 Suppose that the operator L is defined by

Ly ≡ d

dx

(
p(x)

dy

dx

)
+ q(x)y ≡ (p(x)y′)′ + q(x)y,

where y is twice continuously differentiable, p is continuously differentiable, q is contin-
uous and p(x) > 0 for all x in [a, b]. Suppose further that the homogeneous equation

(H) Ly = 0 (x ∈ [a, b])

has only the trivial solution (that is, the solution y = 0 identically on [a, b]) when subject
to both boundary conditions

(α) A1y(a) + B1y
′(a) = 0

(β) A2y(b) + B2y
′(b) = 0

where A1, A2, B1, B2 are constants (A1, B1 not both zero and A2, B2 not both zero).
If f is continuous on [a, b], then the non-homogeneous equation

(N) Ly = f(x), (x ∈ [a, b])

taken together with both conditions (α) and (β), has a unique solution which may be
written in the form

y(x) =
∫ b

a
G(x, t)f(t) dt, (x ∈ [a, b])

where G is continuous on [a, b]2, is twice continuously differentiable on {(x, y) ∈ [a, b]2 :
x �= y}, and satisfies

∂G

∂x
(t + 0, t) − ∂G

∂x
(t − 0, t) =

1
p(t)

, (t ∈ [a, b]).
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[We have used the notation: when f = f(x, t),

f(t + 0, t) = lim
x↓t

f(x, t), f(t − 0, t) = lim
x↑t

f(x, t).]

The linear equations (H) and (N) here, with their left-hand sides written in the form
(py′)′ + qy, are said to be in self-adjoint form.

Note The problem consisting of trying to find solutions of (N) together with (α) and (β),
conditions applying at the two distinct points a and b, is called a two-point boundary
value problem (2-point BVP). It is to be distinguished from the 1-point BVP or
initial value problem (IVP) considered in Chapter 2, where y and y′ are only given
at the single point a and where, unlike here, a unique solution can, under very general
conditions, always be found. The example in Exercise 4 of the previous section underlines
the need to extend our theory.

The conditions (α), (β) are referred to as homogeneous boundary conditions, as
it is only the ratios A1 :B1 and A2 :B2 that matter, not the actual values of A1, A2, B1,
B2.

The function G = G(x, t) occurring in the theorem is called the Green’s function
for the problem consisting of (N) together with the boundary conditions (α), (β). Such
Green’s functions appear throughout the theory of ordinary and partial differential
equations. They are always defined (as below) in terms of solutions of a homogeneous
equation and allow a solution of the corresponding non-homogeneous equation to be given
(as in Theorem 1 here) in integral form.

Aside On the face of it, the equation (N) would seem to be a special case of the non-
homogeneous equation (1) specified at the start of this chapter. In fact, any equation of
the form (1) may be written in the form (N) by first ‘multiplying it through’ by

1
p2(x)

exp
(∫ x p1(t)

p2(t)
dt

)
.

The reader should check that the resulting equation is

d

dx

(
exp

(∫ x p1

p2

)
dy

dx

)
+

p0(x)
p2(x)

exp
(∫ x p1

p2

)
y =

f(x)
p2(x)

exp
(∫ x p1

p2

)
,
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50 Chapter 4: The Non-Homogeneous Linear Equation

where each
∫ x is the indefinite integral. The equation is now in self-adjoint form and

the coefficient functions satisfy the continuity, differentiability and positivity conditions
of Theorem 1.

Before proceeding to the proof of the theorem, we shall establish two lemmas. The
conditions of the theorem will continue to apply.

Lemma 1 Suppose that y1 and y2 are solutions of (H) and that W denotes the
Wronskian W (y1, y2). Then

p(x)W (x) = A, for each x ∈ [a, b],

where A is a real constant. If y1 and y2 are linearly independent, then A is non-zero.

Proof Since y1, y2 solve (H), we have

Ly1 = (py′1)
′ + qy1 = 0,

Ly2 = (py′2)
′ + qy2 = 0.

(15)

Hence, on [a, b] we have

(pW )′ = (p(y1y
′
2 − y2y

′
1))

′

= (y1(py′2) − y2(py′1))
′

= y1(py′2)
′ − y2(py′1)

′

= y1(−qy2) − y2(−qy1), using (15),

= 0.

Thus pW is constant on [a, b]. If y1 and y2 are linearly independent on [a, b], then
Proposition 4 of Chapter 3 tells us that W is never zero in [a, b], and (since we have
insisted that p2 is never zero in [a, b]) the proof is complete. �

Note An alternative proof can be based on Exercise 5 of Chapter 3, with

p(x) = exp
(∫ x p1

p2

)

as in the Aside above.
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Lemma 2 There is a solution y = u of Ly = 0 satisfying (α) and a solution y = v of
Ly = 0 satisfying (β) such that u and v are linearly independent over [a, b].

Proof Noting that Ly = 0 is the linear equation

p(x)y′′ + p′(x)y′ + q(x)y = 0, (x ∈ [a, b])

where p, p′ and q are continuous on [a, b] and p(x) > 0 for each x in [a, b], we see that we
may apply the existence part of Theorem 4 of Chapter 2 to find functions u, v solving

Lu = 0, u(a) = B1, u′(a) = −A1,

Lv = 0, v(b) = B2, v′(b) = −A2.

Then, certainly y = u solves Ly = 0 taken with (α) and y = v solves Ly = 0 taken with
(β). Further, u, v must both be not identically zero in [a, b], because of the conditions
placed on A1, B1, A2, B2.

Suppose that C,D are constants such that

(16) Cu(x) + Dv(x) = 0, for each x in [a, b].

As u, v solve Ly = 0, they must be differentiable and hence we may deduce

(17) Cu′(x) + Dv′(x) = 0, for each x in [a, b].

Multiplying (16) by A2 and (17) by B2, adding and evaluating at x = b gives

C(A2u(b) + B2u
′(b)) = 0.

If C �= 0, u satisfies (β), as well as Ly = 0 and (α), and must be the trivial solution
u ≡ 0 by one of the hypotheses of the theorem. This contradicts the fact that u is not
identically zero in [a, b]. Similarly, we can show that

D(A1v(a) + B1v
′(a)) = 0

and hence, if D �= 0, that v ≡ 0 in [a, b], also giving a contradiction. So, C and D must
both be zero and u, v must be linearly independent over [a, b]. �

Proof of Theorem 1 We first establish uniqueness of the solution. Suppose that y1, y2

solve
Ly = f(x) together with (α), (β).
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52 Chapter 4: The Non-Homogeneous Linear Equation

Then, it is easy to see that y = y1 − y2 solves

Ly = 0 together with (α), (β).

By hypothesis, y must be the trivial solution y ≡ 0. So, y1 = y2 and, if a solution to (N)
together with (α), (β) exists, it must be unique.

Letting u, v be the functions given by Lemma 2, we can deduce from Lemma 1 that

p(x)W (x) = A, for each x in [a, b],

where A is a non-zero constant and W is the Wronskian W (u, v). We may therefore
define G : [a, b]2 → R by

G(x, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(x)v(t)
A

, for a ≤ x ≤ t ≤ b,

u(t)v(x)
A

, for a ≤ t ≤ x ≤ b.

Then G is continuous on [a, b]2, as can be seen by letting t tend to x both from above and
below. Clearly, G is also twice continuously differentiable when x < t and when x > t,
and

∂G

∂x
(t + 0, t) − ∂G

∂x
(t − 0, t) = lim

x→t

(
u(t)v′(x)

A
− u′(x)v(t)

A

)

=
W (t)

A

=
1

p(t)
, using Lemma 1,

for each t in [a, b]. It thus remains to prove that, for x in [a, b],

y(x) =
∫ b

a
G(x, t)f(t) dt;

that is,

(18) y(x) =
v(x)
A

∫ x

a
u(t)f(t) dt +

u(x)
A

∫ b

x
v(t)f(t) dt
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solves (N) and satisfies the boundary conditions (α), (β). First, note that y is well defined
(as G is continuous) and that

(19) y(a) =
u(a)
A

∫ b

a
vf, y(b) =

v(b)
A

∫ b

a
uf.

Using [G] of Chapter 0 to differentiate (18),

y′(x) =
v′(x)

A

∫ x

a
uf +

v(x)u(x)f(x)
A

+
u′(x)

A

∫ b

x
vf − u(x)v(x)f(x)

A

=
v′(x)

A

∫ x

a
uf +

u′(x)
A

∫ b

x
vf,

for each x in [a, b]. So,

(20) y′(a) =
u′(a)

A

∫ b

a
vf, y′(b) =

v′(b)
A

∫ b

a
uf.

From (19), (20),

A1y(a) + B1y
′(a) =

1
A

(A1u(a) + B1u
′(a))

∫ b

a
vf = 0,

since u satisfies (α). Thus, y satisfies (α). Similarly, y satisfies (β), using the fact that v
satisfies this latter condition. Now,

p(x)y′(x) =
p(x)v′(x)

A

∫ x

a
uf +

p(x)u′(x)
A

∫ b

x
vf,

and so, differentiating again,

d

dx
(p(x)y′(x)) =

1
A

d

dx
(p(x)v′(x))

∫ x

a
uf +

1
A

p(x)v′(x)u(x)f(x)

+
1
A

d

dx
(p(x)u′(x))

∫ b

x
vf − 1

A
p(x)u′(x)v(x)f(x).
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54 Chapter 4: The Non-Homogeneous Linear Equation

Hence, as pW = p(uv′ − u′v) = A and Lu = Lv = 0,

Ly =
Lv

A

∫ x

a
uf +

Lu

A

∫ b

x
vf + f = f,

and our proof is complete. �

Note The Green’s function, G = G(x, t), as constructed in the above proof, is inde-
pendent of the function f on the right-hand side of (N). Put another way: the same G
‘works’ for every continuous f .

The triviality condition We should like to make three points concerning the
theorem’s hypotheses that (H), together with (α), (β), only has the identically zero
solution.

(i) The condition is used in two places in the proof, in the deduction of Lemma 2 and
the proof of uniqueness.

(ii) The condition is by no means always met. The reader should check that

y′′ + y = 0, y(0) = y(π) = 0

does not satisfy it. Variation of parameters is a tool in this case, as a solution of Exercise 4
above will have discovered.

(iii) The condition may be recovered from the linear independence of functions u satisfying
Lu = 0 together with (α) and v satisfying Lv = 0 together with (β); that is, the converse
of Lemma 2 is also true, as we shall now show.

Suppose that u satisfies (H) and (α), that v satisfies (H) and (β), and that u, v are
linearly independent, so that the Wronskian W = W (u, v) is never zero in [a, b]. Further,
suppose y satisfies both (α) and (β) as well as (H). Then, by Proposition 6 of Chapter
3, there are constants c1, c2 such that

y = c1u + c2v

and hence
y′ = c1u

′ + c2v
′

on [a, b]. Therefore,

A1y(a) + B1y
′(a) = c1(A1u(a) + B1u

′(a)) + c2(A1v(a) + B1v
′(a))

and since both u and y satisfy (α),

c2(A1v(a) + B1v
′(a)) = 0,
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