
2 Rings

Rings and subrings
This chapter is about rings, which are abstract systems in which addition and
multiplication are defined. The prototype is the ring Z of integers, with the
ordinary arithmetic operations. This is the example to which we keep coming
back: we are interested in seeing how far the familiar properties of integers (as
outlined in Chapter 1) can be extended.

2.1 Introduction. A ring is a set with two binary operations called addi-
tion and multiplication. We use the same notation for these operations in a
general ring as in the integers: addition is represented by an infix +, and multi-
plication by either juxtaposition or an infix ·. (That is, we denote the sum of a
and b by a+ b, and their product by either ab or a · b.)

A ring is defined by a list of axioms, which follows. These are divided into
three groups, involving addition, multiplication, and both operations, respec-
tively. These are meant to be familiar properties of Z. I will assume without
proof that they all hold in Z.

Axioms for addition
(A0) (Closure law): For all a, b ∈ R, a+ b ∈ R.
(A1) (Associative law): a+ (b+ c) = (a+ b) + c for all a, b, c ∈ R.
(A2) (Zero law): There exists 0 ∈ R such that a+0 = 0+ a = a for all a ∈ R.
(A3) (Inverse law): For all a ∈ R, there exists b ∈ R with a+ b = b+ a = 0.
(A4) (Commutative law): a+ b = b+ a for all a, b ∈ R.
Axioms for multiplication
(M0) (Closure law): For all a, b ∈ R, ab ∈ R.
(M1) (Associative law): a(bc) = (ab)c for all a, b, c ∈ R.
Mixed axiom
(D) (Distributive laws): (a + b)c = ac + bc and c(a + b) = ca + cb for all
a, b, c ∈ R.

The two distributive laws are sometimes called the left and right distribu-
tive laws respectively. Please do not try to remember which is which; I will not
use these names.

The closure laws (A0) and (M0) are not strictly necessary: when we say that
addition and multiplication are operations on R, it follows that the closure laws
must hold! We will see the reason for requiring them when we come to look at
subrings in Section 2.4.
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64 Rings

Just as, when buying a personal computer, you are offered various extra
features (more RAM, larger hard disk, etc.), so it is possible to have extra features
in your ring if you are prepared to spend a bit more. Some of these are as follows.
A ring R is a ring with identity if it satisfies

(M2) (Identity law): There exists 1 ∈ R with 1 �= 0 such that a1 = 1a = a for
all a ∈ R.

R is a division ring if it satisfies (M2) and also

(M3) (Inverse law): For all a ∈ R with a �= 0, there exists b ∈ R with
ab = ba = 1.

R is a commutative ring if it satisfies

(M4) (Commutative law): ab = ba for all a ∈ R.
Finally, a commutative division ring is called a field.

Note that the extra multiplicative axioms are almost exact parallels of the
additive axioms that we require in any ring. The exception is that, in the inverse
law, we only require that non-zero elements have multiplicative inverses. We will
see the reason for this soon.

Many authors make the convention that a ring must have an identity. In
other words, they assume axiom (M2) along with (A0)–(A4), (M0), (M1),
and (D).

In fact, some go so far as to use the word rng (sic) for a structure which I
called a ring (that is, satisfying (A0)–(A4), (M0), (M1), and (D), so that they
can use the term rIng for ‘rng with Identity’.

Of course it is just convention. When different groups of mathematicians use
different conventions, you are free to choose the one you like best, but you must
accept that other people will do things differently. When we have learned a bit
more about rings, I will explain why I took the decision I did on page 79.

The commutative law for addition follows from the other axioms for a ring
with identity. The simple argument for this is outlined on page 69. A different
proof is outlined in the solution to Exercise 2.7.

Remark Remember that the qualifying expressions in the terms ‘commutative
ring’ and ‘ring with identity’ refer to the multiplication. The addition in a ring
is always commutative, and there is always an identity (or zero) element for
addition.

2.2 Examples of rings.

Example 1 Our prototype of a ring is the ring Z of integers. It is indeed a ring;
in fact, it is a commutative ring with identity (but not a field, since, for example,
there is no integer x such that 2x = 1). I assume that all of these properties of
integers are familiar to you. To give formal proofs, it is necessary to have a
careful definition of the integers. This is done in courses on the Foundations of
Mathematics: we will look at the arguments in Chapter 6.
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Rings 65

Example 2 Other familiar number systems, such as Q (the rational numbers),
R (the real numbers), and C (the complex numbers), are fields.

Example 3: Matrix rings Let R be any ring. Let Mn(R) denote the set of
all n×n matrices with elements in R. We can define addition and multiplication
on Mn(R) by rules which look exactly the same as those for matrices of real
numbers, which we saw in the last chapter. That is, if A=(aij) and B=(bij)
(this means that the element in row i and column j of A is aij , etc.), then

A+B = C = (cij), where cij = aij + bij ,

A ·B = D = (dij), where dij =
n∑

k=1

aikbkj .

(Note that the rule for matrix addition depends on addition of ring elements,
while the rule for matrix multiplication involves calculating n products and
adding them up. There is a potential problem here, since we can only add two
elements at a time: we will see in the next section that it does not matter how
we perform the additions.)

It can be shown that Mn(R) is a ring. (See Exercise 2.2 for the case n = 2.)
If R has an identity, then so does Mn(R) (the usual identity matrix with 1

on the diagonal and 0 everywhere else). But Mn(R) is not commutative except
in trivial cases, and is never a division ring for n> 1.

Example 4: Polynomial rings For any ring R, the set R[x] of all polynomials
with coefficients in R is a ring. This is a generalisation of the familiar case of
real polynomials. We will discuss exactly what a polynomial is, and how addition
and multiplication should be defined in general, in Section 2.9.

Example 5: Finite rings A finite ring can be specified by giving operation
tables for its addition and multiplication. For obvious reasons, these tables are
usually called addition tables and multiplication tables.

For example, it can be shown that the structure given by

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

is a field. This can be proved directly, but it takes some work. For example,
to verify the associative law (A1) from the tables, we have to substitute all
possible values of a, b, and c. There are two possibilities for each of these, so
23 =8 instances of the law to be checked. Also, of course, eight instances of
the associative law for multiplication, four of the commutative law, 16 of the
distributive law . . . . For larger finite rings the situation is even worse. The moral
is that, if all else fails, this method can be used; but usually it is better to have
a more theoretical proof!
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66 Rings

You probably recognised that the ring with the above tables is Z2, the integers
mod 2. In fact, Zm is a ring, for any positive integer m. But not all finite rings
are of this kind. Here is one which is not.

+ 0 1 a b

0 0 1 a b
1 1 0 b a
a a b 0 1
b b a 1 0

· 0 1 a b

0 0 0 0 0
1 0 1 a b
a 0 a a 0
b 0 b 0 b

Example 6: Zero rings Let R be a set with one binary operation + satisfying
axioms (A0)–(A4). (Later, we will see that such a thing is called an abelian
group.) Is it possible to define a multiplication on R so that it becomes a ring?
The answer is yes: it is always possible, by the trivial rule

ab = 0 for all a, b ∈ R,
where 0 is the zero element given by (A2).

To prove this, we check the remaining axioms:
(M0): For all a, b ∈ R, ab = 0 ∈ R.
(M1): For all a, b, c ∈ R, (ab)c = 0 = a(bc).
(D): For all a, b, c ∈ R, we have (a+ b)c = 0, while ac+ bc = 0+0 = 0, using

property (A2). Similarly the other way round.
A ring constructed in this manner (one in which all products are zero) is

called a zero ring. Such rings always exist, but they are not very exciting.

Example 7 The set of all even integers is a ring. It is commutative, but does
not have an identity. (There is no even integer e such that ex = x for all even
integers x.)

Example 8: Boolean rings Just as Descartes aimed to turn geometry into
algebra by setting up coordinates in the Euclidean plane, so Boole attempted to
turn set theory (and logic) into algebra, as we see below. The main legacy of his
attempt is that his name is familiar to every computer scientist.

Let X be a set, and let R denote the power set of X, the set of all subsets of
X. (This is sometimes denoted by P(X).) We define operations on R as follows.
For A,B ⊆ X, we let A+B be the symmetric difference of A and B, the set
of all elements lying in either A or B but not both. (This is sometimes written
A�B.) Also, we let A ·B be the intersection A ∩B.

Now R is a ring. Let us check the axioms.
(A0): Clear.
(A1): Use a Venn diagram or truth table to show that (A + B) + C and

A + (B + C) are both equal to the set of elements which are either in all three
of the sets A,B,C or in exactly one of them.

(A2): A+ ∅ = A, since nothing is in the empty set; so ∅ is the zero element.
(A3): A+A = ∅, since there is no element which lies in A but not in both A

and A.(!) So the inverse of A is A.
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Rings 67

(A4): Clear.
(M0): Clear.
(M1): (AB)C and A(BC) both consist of the elements lying in all three sets.
(D): Prove this by means of a Venn diagram or truth table.
Now R is a commutative ring. It has an identity, namely the whole set X

(since X ∩ A = A for any A ⊆ X). But it is not a division ring if X has more
than one element: the equation A∩B = X can never hold if A is a proper subset
of X.

A ring of this form is called a Boolean ring. For example, when X = {0, 1},
the addition and multiplication tables are as follows:

+ ∅ {0} {1} {0, 1}
∅ ∅ {0} {1} {0, 1}

{0} {0} ∅ {0, 1} {1}
{1} {1} {0, 1} ∅ {0}

{0, 1} {0, 1} {1} {0} ∅

· ∅ {0} {1} {0, 1}
∅ ∅ ∅ ∅ ∅

{0} ∅ {0} ∅ {0}
{1} ∅ ∅ {1} {1}

{0, 1} ∅ {0} {1} {0, 1}

2.3 Properties of rings. In this section we prove a few basic properties
which follow from the ring axioms.

1. In a ring, we can only add elements two at a time. What if we want to add
more than two elements? We have to put in brackets to convert the sum into
a succession of pairwise additions. However, because of the associative law, the
answer is the same no matter how we put in the brackets. For example, consider
a+b+c+d. There are five possible ways of evaluating this, corresponding to the
five bracketings ((a+b)+c)+d, (a+(b+c))+d, (a+b)+(c+d), a+((b+c)+d),
and a + (b + (c + d)). Now (a + b) + c = a + (b + c), so the first two are equal.
Similarly, (b+c)+d = b+(c+d), so the fourth and fifth are equal. Now consider
(a+b)+(c+d). Putting a+b = x, this is x+(c+d) = (x+c)+d = ((a+b)+c)+d;
similarly, putting c+d = y, it works out to a+(b+(c+d)). So all the expressions
are equal.

We usually write a+ b+ c+ d, leaving out the brackets.
In fact, the sum of any number of elements does not depend on the bracketing

used to work it out. This might seem obvious to you as an extension of the above
argument. But we can (and should) give a correct formal proof.

Proposition 2.1 In a ring, the sum a1 + · · ·+ an of any number of elements
is independent of the bracketing used to work it out.

Proof The proof is by induction on n. For n = 1 and n = 2, there is nothing to
prove. For n = 3, there are just two possible bracketings, namely (a1 + a2) + a3
and a1 + (a2 + a3), and the associative law tells us that they are equal. So let
us assume that the result holds for sums of fewer than n terms, and prove it for
sums of n terms. The induction hypothesis allows us to write a1 + · · · + am for
the sum of m terms whenever m < n.
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68 Rings

Now consider two bracketings of the sum of a1, . . . , an. In the evaluation of
each bracketing, at the last-but-one stage, we will have two expressions, the sum
of a1, . . . , ak, and the sum of ak+1, . . . , an, which are then added at the last stage.
By the induction hypotheses, each of these smaller sums is independent of the
bracketing, and so we can write the whole expression as

(a1 + · · ·+ ak) + (ak+1 + · · ·+ an),

where 0 < k < n. Similarly, the other expression reduces to

(a1 + · · ·+ al) + (al+1 + · · ·+ an),

where 0 < l < n.
If k = l, these expressions are clearly equal. So suppose not. We may assume

that k < l. Now, again using the inductive hypothesis, we can write the first as

(a1 + · · ·+ ak) + ((ak+1 + · · ·+ al) + (al+1 + · · ·+ an)),

and the second as

((a1 + · · ·+ ak) + (ak+1 + · · ·+ al)) + (al+1 + · · ·+ an).

But these have the form x+ (y + z) and (x+ y) + z, where

x = a1 + · · ·+ ak,

y = ak+1 + · · ·+ al,

z = al+1 + · · ·+ an;

by the associative law, they are equal.

The argument does not depend on the fact that the operation is called ‘addi-
tion’, but only on the associative law. So the same is true, for example, for the
operation of multiplication in a ring.

2. Axiom (A2) guarantees that a zero element exists. Could there be more than
one? Suppose that z1 and z2 are two zero elements in a ring R; that is, for all
a ∈ R,

a+ z1 = z1 + a = a = a+ z2 = z2 + a.

Then we have
z1 = z1 + z2 = z2.

So the zero element is unique. A very similar argument shows that, in a ring
with identity, the identity element is unique.

3. It is also true that inverses (as given by (A3)) are unique. For suppose that b
and c are both inverses of a. This means that

a+ b = b+ a = 0 = a+ c = c+ a.
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Rings 69

Now

b+ (a+ c) = b+ 0 = b,

(b+ a) + c = 0 + c = c.

By the associative law, the left-hand sides are equal; so b = c.
We write the inverse of a as −a. Also, we abbreviate a+(−b) to a− b. Notice

that we are falling into mathematical bad habits here: the symbol − is being
used in the first place as a unary operator (taking a to −a), and in the second as
a binary operator (combining a and b to form a− b). In fact, people are used to
this double use and have no trouble with it, but many calculators have different
buttons for the two different uses of −.

Similarly, in a division ring, the multiplicative inverse of a non-zero element
a is unique (and is written a−1, so that aa−1 = a−1a = 1).

4. The cancellation law holds for addition:

(C) (Cancellation Law): If a+ c = b+ c, then a = b.

Proof Suppose that a+ c = b+ c. Add −c to each side:

(a+ c)− c = (b+ c)− c,

a+ (c− c) = b+ (c− c),

a+ 0 = b+ 0,

a = b.

5. Here is the proof that the commutative law for addition follows from the other
axioms in a ring with identity.

Expand (1 + 1)(a+ b) in two ways. We get

(1 + 1)(a+ b) = (1 + 1)a+ (1 + 1)b

= a+ a+ b+ b,

and

(1 + 1)(a+ b) = 1(a+ b) + 1(a+ b)

= a+ b+ a+ b.

So a+ a+ b+ b = a+ b+ a+ b. Cancelling a from the front and b from the end
gives a+ b = b+ a, as required.

6. For any a ∈ R, a0 = 0a = 0.

Proof
a(0 + 0) = a0 + a0.
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70 Rings

Also, 0 + 0 = 0, so
a(0 + 0) = a0 = a0 + 0.

Now use (C) to cancel a0 from the equation to give a0 = 0.
The proof that 0a = 0 is similar.

Remark This is the reason why axiom (M3) for a division ring only requires
non-zero elements to have multiplicative inverses; for 0 �= 1, and x0 = 0 for all
X ∈ R, so there cannot exist b with b0 = 1.

7. For any a ∈ R, −(−a) = a.

Proof −(−a) is the inverse of −a; that is, it is an element which, when added
to −a, gives zero. But we know that a added to −a gives zero. Since inverses are
unique, these two inverses of −a must be equal.

8. For any a, b ∈ R, −(a+ b) = −b− a.

Proof We have to show that −b− a is the inverse of a+ b. So add it to a+ b:

−b− a+ (a+ b) = −b+ (−a+ a) + b

= −b+ 0 + b

= −b+ b

= 0,

as required.

2.4 Subrings. Let R be a ring. A subring of R is a subset S ⊆ R which
itself forms a ring (using the same operations as those in R).

Let us see what checking the axioms involves in this case.
(A0): We require closure, that is, for all a, b ∈ S, a+ b ∈ S.
(A1): The associative law automatically holds for all a, b, c ∈ S, since it holds

for all a, b, c in the larger set R.
(A2): We require that the zero element of R lies in S.
(A3): For each a ∈ S, we require that −a ∈ S.
(A4): This holds automatically, by the same argument as for (A1).
(M0): We require that S is closed under multiplication.
(M1): This is automatic, as for (A1). The same is true of (D).
We conclude that, of the eight axioms, four are automatically true, just

because we are looking at a subset of a ring. (These are the axioms assert-
ing that all elements satisfy some equation.) So we only have to require the two
closure axioms, the zero and inverse axioms.

In fact, we can whittle these down to three:

Theorem 2.2 (First Subring Test) A non-empty subset S of a ring R is a
subring provided that, for all a, b ∈ S, we have a+ b, ab,−a ∈ S.
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Rings 71

Proof We are given the closure and inverse axioms; we have to show that
0 ∈ S. But S is non-empty, so take any element a ∈ S. Then, by assumption,
−a ∈ S, and so 0 = a+ (−a) ∈ S, as required.

We can do even better, reducing the number of tests to two: closure under
subtraction and multiplication.

Theorem 2.3 (Second Subring Test) A non-empty subset S of a ring R is
a subring provided that, for all a, b ∈ S, we have a− b, ab ∈ S.

Proof Suppose that S is closed under subtraction and multiplication. To show
it is a subring, we verify the conditions of the First Subring Test. Take an element
a ∈ S. Then a− a = 0 ∈ S; so 0− a = −a ∈ S, and the inverse law holds. Now
take a, b ∈ S. Then −b ∈ S, and so a − (−b) = a + b ∈ S, and we have closure
under addition. Closure under multiplication is given; so S is a subring.

Example We find all the subrings of the ring Z of integers.
First, we show that, for any integer m, the set mZ = {mx : x ∈ Z} of all

multiples of m is a subring. Take a, b ∈ mZ; let a = mx, b = my, for some
integers x, y. Then

a− b = m(x− y) ∈ mZ,

ab = m(mxy) ∈ mZ,

so mZ passes the Second Subring Test.
Now we show that every subring of Z is of this form. So let S be a subring.

Certainly 0 ∈ S. If S = {0}, then S = 0Z is of the required form. So suppose
not. If n ∈ S, then also −n ∈ S; so S must contain some positive integer. Let m
be the smallest positive integer in S. We will prove that S = mZ. Proving this
equality involves showing that each element of one set is in the other and vice
versa.

First, take any element of mZ, say mx. If x = 0, then mx = 0 ∈ S. If
x > 0, then mx = m + m + · · · + m (x terms), and m ∈ S; so mx ∈ S
by closure. If x < 0, let x = −y. Then my ∈ S as above, and then
mx = −my ∈ S.

Conversely, take any element of S, say n. By the Division Algorithm for
integers, we can divide n by m, obtaining a quotient q and remainder r; thus,
n = mq + r, and 0 ≤ r < m. Now n ∈ S and mq ∈ S, so r = n −mq ∈ S. If
r > 0, we have a contradiction to the fact that m is the smallest positive integer
in S. So, necessarily, r = 0 and n = mq ∈ mZ.

Remark If you are asked to prove that something is a ring, it is usually much
easier to recognise that it is a subset of a structure known to be a ring, and then
apply one of the subring tests, than it is to check the eight ring axioms directly.
Bear this in mind when you tackle Problems 2.1 and 2.3.
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Exercise 2.1 Which of the following sets are rings (with the usual addition and
multiplication):

(a) the natural numbers;
(b) the real polynomials of degree at most n;
(c) all polynomials with integer coefficients;
(d) all polynomials with integer coefficients and constant term zero;
(e) all polynomials with integer coefficients and degree at most four;
(f) all real polynomials f such that f(2) = 0;
(g) all integers divisible by 3;
(h) all non-singular 2 × 2 real matrices;
(i) all complex numbers of the form a+ bi for a, b ∈ Z;
(j) all real functions of the form f(x) = ax+ b for a, b ∈ R.

Exercise 2.2 Let R be a ring, and let M2(R) denote the set of all 2× 2 matrices with
elements from R. Define addition and multiplication of 2 × 2 matrices by the usual
rules: (

a b
c d

)
+

(
e f
g h

)
=

(
a+ e b+ f
c+ g d+ h

)
,

(
a b
c d

)
·
(
e f
g h

)
=

(
ae+ bg af + bh
ce+ dg cf + dh

)
.

Prove carefully that M2(R) is a ring.

Exercise 2.3 Which of the following sets of 2 × 2 matrices over the real numbers
are rings (with the addition and multiplication defined in Problem 2.2)? Which are
commutative? Which have an identity? Which are division rings?

(a) The set of all symmetric matrices (matrices A satisfying A� = A).
(b) The set of all skew-symmetric matrices (matrices A satisfying A� = −A).
(c) The set of all upper-triangular matrices (matrices of the form

(
a b
0 c

)
).

(d) The set of all strictly upper-triangular matrices (matrices of the form
(
0 a
0 0

)
).

(e) The set of matrices of the form
(
a b
−b a

)
.

[The transpose A� of a matrix A =
(
a b
c d

)
is given by A� =

(
a c
b d

)
.]

Exercise 2.4 Prove that, in any ring R,

(a1 + a2 + · · · + am)(b1 + b2 + · · · + bn) = a1b1 + a1b2 + · · · + a1bn
+ a2b1 + · · ·
+ amb1 + · · · + ambn.

Exercise 2.5 Let R be a ring. For a positive integer n, let n · x denote x+ · · ·+ x (n
terms). Prove that
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Rings 73

(a) (m+ n) · x = m · x+ n · x and (mn) · x = m · (n · x).
(b) if 1 is an identity and n · 1 = 0, then n · x = 0 for all x.

Exercise 2.6 Let x and y be elements of a ring R, and suppose that xy = yx. Prove
the Binomial Theorem for n > 0:

(x+ y)n =
n∑

i=0

(
n

i

)
· xn−iyi.

[As in the preceding question, m · x = x+ · · · + x (m terms).]

Exercise 2.7 Let R be a ring with identity element 1.

(a) Prove that (−1) · x = −x, where −1 and −x are the additive inverses of 1 and x.
(b) Show that −(x+ y) = −y − x.
(c) Hence show that the commutativity of addition can be deduced from the other

axioms for a ring with identity.

Show that this is false if no identity element exists. [Hint : Let all products be zero.]

Exercise 2.8 Let R be a ring in which every element x satisfies x2 = x (where x2

means xx).

(a) By evaluating (x+ x)2, show that x+ x = 0 for all x ∈ R.
(b) By evaluating (x+ y)2, show that R is commutative.

Remark Any Boolean ring satisfies the condition x2 = x for all x ∈ R. It can
be shown that any finite ring satisfying this condition is a Boolean ring.

In the spirit of abstract algebra, we will re-define the term Boolean ring to
mean a ring R with identity satisfying x2 = x for all x ∈ R.

Exercise 2.9 Let R and S be rings. Define operations on R × S (the set of ordered
pairs) by the rules

(r1, s1) + (r2, s2) = (r1 + r2, s1 + s2),

(r1, s1)(r2, s2) = (r1r2, s1s2).

Prove that R × S is a ring. Show further that R × S is commutative if and only if R
and S are commutative, and that R×S has an identity if and only if R and S do. Can
R× S ever be a field?

Remark R × S is known as the direct product or direct sum of the two
rings R and S.

Exercise 2.10 (a) Let R be a ring in which the elements are the integers, and the
addition is the same as in Z. Is it possible that the multiplication is different from that
in Z? Can you describe all such rings?

(b) (∗∗) Let R be a ring in which the elements are the integers, and the mul-
tiplication is the same as in Z. Is it possible that the addition is different from
that in Z?
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74 Rings

(Part (b) is much more difficult than part (a); you are not expected to solve it at
this stage. We will return to this later.)

Exercise 2.11 (∗) The field C of complex numbers was described in Chapter 1
as the set of all objects a + bi, where a and b are real numbers, where addition
and multiplication are defined according to ‘the usual rules’ subject to the extra
condition that i2 = −1. Hamilton constructed a larger number system, the quater-
nions, as follows. The elements of H are all objects of the form a + bi + cj + dk.
Addition and multiplication are defined according to the usual rules, subject to the
condition that multiplication of the elements 1, i, j, k works according to the following
table:

· 1 i j k
1 1 i j k
i i −1 k −j
j j −k −1 i
k k j −i −1

Prove that H is a non-commutative division ring. [Hint : Define the conjugate of
the element z = a+ bi + cj + dk to be z = a− bi − cj− dk.] Prove that

zz = (a2 + b2 + c2 + d2) · 1.

Homomorphisms and ideals
Two rings are essentially the same for the purposes of algebra (the technical
term is ‘isomorphic’) if we can match up their elements in such a way that
addition and multiplication correspond; that is, if a corresponds to a′ and b to
b′, then a + b corresponds to a′ + b′ and ab to a′b′. In this section, we define a
weaker relationship between rings, which merely asserts that they are somewhat
alike.

2.5 Cosets. The first topic seems to be a digression, but its relevance will
become clear soon. Let S be a subring of the ring R. We will partition R into
subsets called cosets of S.

Define a relation E on the set R by the rule that (a, b) ∈ E if b − a ∈ S. I
claim that E is an equivalence relation. It is

• reflexive, since a− a = 0 ∈ S;
• symmetric, since if b− a ∈ S then a− b = −(b− a) ∈ S;
• transitive, since if b− a ∈ S and c− b ∈ S then c− a = (c− b)+ (b− a) ∈ S.

So it is indeed an equivalence relation.
By the Equivalence Relation Theorem, R is partitioned into equivalence

classes E(a), where E(a) = {b : (a, b) ∈ E}. These equivalence classes are called
the cosets of S in R. We examine them a bit more closely, and observe that

E(a) = S + a = {s+ a : s ∈ S}.
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Rings 75

To see this, first take b ∈ S+ a. Then b = s+ a for some s ∈ S, so b− a = s ∈ S,
whence (a, b) ∈ E and b ∈ E(a). Conversely, if b ∈ E(a), then b− a ∈ S. Putting
s = b− a, we have b = s+ a ∈ S + a as required.

Example Let R = Z and S = 4Z. Then

S = S + 0 = {. . . ,−8,−4, 0, 4, 8, . . .},
S + 1 = {. . . ,−7,−3, 1, 5, 9, . . .},
S + 2 = {. . . ,−6,−2, 2, 6, 10, . . .},
S + 3 = {. . . ,−5,−1, 3, 7, 11, . . .},

and S + 4 = S, at which point the sequence repeats. (Compare the example in
Section 1.4.3.)

More generally, if R = Z and S = nZ, where n is a positive integer, then the
coset nZ+ a is the set of all integers congruent to a mod n. Thus, the cosets are
the congruence classes mod n, and there are n of them altogether.

The element a is called a coset representative for the coset S + a. Note
that the system is perfectly democratic: any element of a coset can serve as its
representative. (Actually, this is very slightly misleading in one case. The subring
S is a coset of itself, namely S + 0; and while we could use any of its elements
as a representative, it is most natural to use the element 0.)

2.6 Homomorphisms and ideals. I introduce these two slightly strange
words by means of an example. Suppose that I am short-sighted (actually this is
correct), and that when I look at an integer I can only see whether it is even or
odd. I will not know much about the integers, but I will know enough to make
some consistent statements about addition and multiplication: for example, even
plus even equals even. My knowledge can be summarised in tables:

+ even odd
even even odd
odd odd even

· even odd
even even even
odd even odd

.

This looks very much like the two-element ring of Example 5 in Section 2.2. The
point is that it is indeed a ring, and captures a little bit of the ‘shape’ of the
ring of integers.

We define a homomorphism from a ring R to a ring S to be a function or
map θ : R→ S which satisfies

θ(a+ b) = θ(a) + θ(b),

θ(ab) = θ(a)θ(b)

for all a, b ∈ R. Note that the addition and multiplication on the left of these
equations are the operations in R, while those on the right are the opera-
tions in S.
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76 Rings

Having said this, I will perversely change notation right away. There are good
reasons for writing the result of applying θ to a, not as θ(a), but as aθ. With this
notation, we say that the map θ is written on the right. One reason is that, in
algebra, we often have to apply a function θ followed by another function φ: this
is written as aθφ, whereas if we wrote functions on the left we would have to
say φ(θ(a)), and always remember to reverse the order. From now on, functions
with an algebraic significance, such as homomorphisms, will always be written
on the right; while functions with no such significance, such as polynomials, will
be written on the left. So f(x) = x2 + 1 is a polynomial, and fθ is the result of
applying to it some homomorphism from the ring of all polynomials to another
ring. Confused? Remember that not everybody uses this convention!

Let us rewrite the definition of a homomorphism in the new notation
θ : R→ S is a homomorphism if

(a+ b)θ = aθ + bθ,

(ab)θ = (aθ)(bθ).

The word homomorphism means ‘similar shape’; this is meant to suggest that
some of the ‘shape’ of the ring R is captured by S, as in our example. In this
terminology, if S is the ring {0, 1} of Example 5 of Section 2.2, then the function
θ : Z → S defined by

nθ =
{

0 if n is even
1 if n is odd,

is a homomorphism.
A homomorphism which is also a bijection (a one-to-one and onto function)

is called an isomorphism. If there is an isomorphism from R to S, we say that
the rings R and S are isomorphic. This means that they are ‘matched up’ by
the function θ in such a way that the addition and multiplication are the same.
So, from the point of view of abstract algebra, we will regard the two rings as
being the same, even if their actual elements are quite different (one ring might
consist of matrices and the other of polynomials, say). We denote ‘R and S are
isomorphic’ by R ∼= S.

Any homomorphism θ : R→ S has the additional properties

0θ = 0,

(a− b)θ = aθ − bθ

for all a, b ∈ R. The first equation follows from

0θ + 0θ = (0 + 0)θ = 0θ = 0θ + 0

by using the Cancellation Law in S. The second from the fact that

(a− b)θ + bθ = (a− b+ b)θ = aθ.
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Our main task in this section is to see just how much a homomorphism blurs
the structure of a ring, and how much shape is preserved.

Example We will find all homomorphisms from the ring Z to itself. Let θ be
a homomorphism. Suppose that 1θ = n. Then 2θ = (1 + 1)θ = n+ n = 2n, and
similarly (by induction), mθ = mn for all positive integers m. Moreover, 0θ = 0,
and for positive m we have (−m)θ = −mθ = −mn. So θ multiplies every integer
by n.

So far, we have only used the additive property. Now we turn to multiplica-
tion, and observe that

n = 1θ = 1θ · 1θ = n · n = n2,

so that n = 0 or n = 1. So there are only two homomorphisms, namely

• θ0: x �→ 0 for all x;
• θ1: x �→ x for all x.

In fact, these rules define ‘trivial’ homomorphisms on any ring R. So our favourite
ring Z is somewhat poor in homomorphisms: the only homomorphisms from Z

to itself are the trivial ones possessed by all rings. (Of course, as we saw, there
are homomorphisms from Z to other rings.)

A homomorphism θ : R→ S is a function, and so has an image and a kernel
in the sense of Section 1.18. As promised there, we simplify the definition of the
kernel slightly.

Definition Let θ : R→ S be a homomorphism of rings. The image of θ is

Im(θ) = {s ∈ S : s = rθ for some r ∈ R},

and the kernel of θ is

Ker(θ) = {r ∈ R : rθ = 0}.

Remark In Section 1.18, the kernel of a function was defined to be the equiva-
lence relation in which two elements are equivalent if they have the same image.
So Ker(θ) is the equivalence class containing 0 of the relation KER(θ).

Proposition 2.4 Let θ : R→ S be a ring homomorphism.

(a) Im(θ) is a subring of S.
(b) Ker(θ) is a subring of R which has the additional property that, for any

x ∈ Ker(θ) and r ∈ R, we have rx, xr ∈ Ker(θ).
(c) Two elements of R are mapped to the same element of S under θ if and

only if they lie in the same coset of Ker(θ).

Part (c) of this result states that the equivalence classes of the equivalence
relation KER(θ) are precisely the cosets of the subring Ker(θ). This is why we
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use the simpler definition: we can obtain the entire kernel (in the first sense)
from the subring Ker(θ). This also shows an important property of cosets.

Proof (a) We apply the subring test. Take s1, s2 ∈ Im(θ). Then s1 = r1θ and
s2 = r2θ, for some r1, r2 ∈ R. Then

s1 − s2 = r1θ − r2θ = (r1 − r2)θ ∈ Im(θ),

s1s2 = (r1θ)(r2θ) = (r1r2)θ ∈ Im(θ);

so Im(θ) is a subring of S.
(b) Similarly, take r1, r2 ∈ Ker(θ). Then r1θ = r2θ = 0; so

(r1 − r2)θ = r1θ − r2θ = 0− 0 = 0,

(r1r2)θ = (r1θ)(r2θ) = 0 · 0 = 0;

so r1 − r2, r1r2 ∈ Ker(θ), and Ker(θ) is a subring.
Now we check the extra condition. Suppose that x ∈ Ker(θ) and r ∈ R. Then

(rx)θ = (rθ)(xθ) = rθ · 0 = 0,

and so rx ∈ Ker(θ). Similarly, xr ∈ Ker(θ).
(c) Suppose that r1θ = r2θ. Then (r2 − r1)θ = 0, so x = r2 − r1 ∈ Ker(θ);

then r2 ∈ Ker(θ) + r1, so r1 and r2 lie in the same coset of Ker(θ). Conversely,
if r1 and r2 lie in the same coset, say r2 = r1 + x with x ∈ Ker(θ); then
r2θ = r1θ + xθ = r1θ, since x ∈ Ker(θ).

The extra property of the subring Ker(θ) is so important that it is given
a special name. An ideal of a ring R is a subring S of R such that, for any
s ∈ S and r ∈ R, we have rs, sr ∈ S. The term was invented by Kummer, who
invented ‘ideal numbers’ in an attempt to correct a mistake in his attempted
proof of Fermat’s Last Theorem. Unfortunately, he did not succeed, and we had
to wait another hundred years until Fermat’s Last Theorem was proved; but the
concept of an ideal is crucial for ring theory.

To test for an ideal, we should test for a subring and then check the extra
condition. But we can simplify things:

Theorem 2.5 (Ideal Test) A non-empty subset S of a ring R is an ideal of
R if and only if

(a) for all s1, s2 ∈ S, we have s1 − s2 ∈ S;
(b) for all s ∈ S and r ∈ R, we have rs, sr ∈ S.
Proof All that is missing is closure under multiplication; but this is just the
special case of (b) corresponding to the case in which r ∈ S.

So we can say more briefly:

The kernel of a homomorphism θ : R→ S is an ideal of R.
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Example We found in Section 2.4 that the subrings of Z are all the sets of
the form nZ for n ∈ Z, where nZ consists of all multiples of n. Now all of these
subrings are ideals. For take r ∈ Z and s ∈ nZ, say s = nx for some x ∈ Z. Then
rs = sr = n(rx) ∈ nZ. So we have found all the ideals of Z.

2.7 Should a ring have an identity? What are the reasons for not
requiring the existence of an identity in a ring?

First, it is convenient that an ideal is a particular kind of subring. But if rings
are required to have identities, then all their ideals (with one exception) fail to
be subrings! (In the next chapter, we will see a close analogy between groups,
subgroups, and normal subgroups on one hand, and rings, subrings, and ideals
on the other. This analogy would fail if ideals were not subrings.)

Proposition 2.6 Let R be a ring with identity element 1, and I an ideal
containing 1. Then I = R.

Proof For any element r ∈ R, we have r = 1 · r ∈ I.
Second, there are several important examples of rings which are used in

various branches of mathematics and which do not contain identities. For
example,

• C0(R), the ring of continuous real-valued functions with bounded support;
• the direct sum of an infinite collection of rings (even if all the factors have
identities).

Third, the argument that a more general definition is better. In topology,
there was a debate over whether a topological space should be required to satisfy
the ‘Hausdorff condition’ or not; this was resolved in favour of the more general
approach.

Finally, the traditional defence: if a ring does not have an identity, we can
put one in!

Proposition 2.7 Let R be a ring. Then there is a ring R∗ with identity which
contains a subring isomorphic to R.

Proof Let

R∗ = R× Z = {(r, n) : r ∈ R,n ∈ Z},

and define addition and multiplication on R∗ by the rules

(r1, n1) + (r2, n2) = (r1 + r2, n1 + n2),

(r1, n1) · (r2, n2) = (r1r2 + n2r1 + n1r2, n1n2),

where the product nr of an integer and a ring element is defined as in Exercise 2.5
for positive n (that is, the sum of n copies of r), with 0r = 0 and (−m)r = −(mr)
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for n= −m < 0. [Warning : This is not the direct product of rings defined in
Exercise 2.9.]

Now a small amount of checking shows that

• R∗ is a ring;
• (0, 1) is the identity of R∗;
• S = {(r, 0) : r ∈ R} is a subring of R∗ (in fact, it is an ideal);
• the map r �→ (r, 0) is an isomorphism from R to S.

Of course, if R already has an identity element, then this element is no longer
the identity of R∗.

2.8 Factor rings and isomorphism theorems. For any integer n, the set
nZ of multiples of n is an ideal of Z (and all ideals are of this form). We saw
earlier that the cosets of nZ are just the congruence classes mod n. But we can
do more: we can add and multiply integers mod n. This means that, if we take
two congruence classes nZ+x and nZ+ y, then the sum of any integer from the
first class and any integer from the second will always lie in the congruence class
nZ+ (x+ y); and, similarly, the product of integers from these classes will lie in
nZ+ xy. In this way, we can define operations of addition and multiplication on
the set of congruence classes mod n (a finite set with n elements). With these
operations, the set of congruence classes becomes a ring.

This all works much more generally; for any ideal I of a ring R, it is possible
to make the set of cosets of I in R into a ring, called the ‘factor ring’ of R by I
and denoted R/I, as follows.

Definition Let I be an ideal in the ring R. The factor ring or quotient ring
R/I is the set of cosets of I in R, with operations of addition and multiplication
defined by

(I + x) + (I + y) = I + (x+ y),

(I + x)(I + y) = I + xy.

Theorem 2.8 The factor ring, as defined above, is indeed a ring.

Proof Before we verify the axioms, there is one very important thing to check:
that the definition is a good one. On the face of it, the definition depends on the
choice of coset representatives. It is not clear that, if x1 and x2 are two repre-
sentatives of a coset of I, and y1 and y2 are two representatives of another coset,
then x1 + y1 and x2 + y2 lie in the same coset (and similarly for multiplication).
Suppose that we have such elements. Then x2 = x1+a and y2 = y1+ b, for some
a, b ∈ I. Then

(x2 + y2)− (x1 + y1) = (x1 + a+ y1 + b)− (x1 + y1) = a+ b ∈ I,
(x2y2)− (x1y1) = (x1 + a)(y1 + b)− (x1y1) = x1b+ ay1 + ab ∈ I,
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where, in the last step, ab ∈ I since I is a subring, and x1b, ay1 ∈ I since I is an
ideal. So the operations on R/I are indeed well defined.

Now the rest of the proof involves verifying the axioms, which is routine.
The closure laws need no proof, since we have well-defined operations. For the
associative law (A1), we have

((I + x) + (I + y)) + (I + z) = (I + (x+ y)) + (I + z)

= I + ((x+ y) + z)

= I + (x+ (y + z))

= (I + x) + (I + (y + z))

= (I + x) + ((I + y) + (I + z)).

The proofs of (A4), (M1), and (D) are very similar. The zero element is I+0 = I,
and the inverse of I + x is I + (−x) (which, of course, we write as I − x).

You were warned in the last chapter that a set of sets is difficult to think
about, especially if we have to perform operations on its elements. Here is
precisely that situation. But it is so important that it is worth taking some
trouble to grasp the ideas.

You may recognise that, if R is the ring Z of integers and I is the setmZ of all
multiples of the positive integer m, then the ring R/I is precisely the structure
we called ‘the integers mod m’ in Chapter 1, and denoted by Zm. We will use
the same notation here. The integers mod m provide a very good example of a
factor ring.

The factor ring comes as the image of a natural homomorphism, as follows:
Remember that the elements of R/I are the cosets of I in R. Now define a map
θ : R → R/I by the rule that xθ = I + x for all x ∈ R. Checking that θ is
a homomorphism and is straightforward (we could say that the definitions of
addition and multiplication in R/I were chosen to make this work):

(x+ y)θ = I + (x+ y) = (I + x) + (I + y) = xθ + yθ,

(xy)θ = I + xy = (I + x)(I + y) = (xθ)(yθ).

The image of θ is R/I, since every coset has the form I + x for some x ∈ R.
What is the kernel of θ? Since the zero element of R/I is the coset I, we have

Ker(θ) = {x ∈ R : I + x = I} = {x ∈ R : x ∈ I} = I.

We call the map θ the canonical homomorphism from the ring R to its factor
ring R/I. Hence we have proved the following:

Theorem 2.9 The canonical homomorphism θ : R → R/I defined by xθ =
I +x for x ∈ R is indeed a homomorphism; its image is R/I and its kernel is I.

Armed with the concept of factor rings and the canonical homomorphism, we
can return to our analysis of the image and kernel of an arbitrary homomorphism.
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82 Rings

Theorem 2.10 (First Isomorphism Theorem) Let θ : R → S be a ring
homomorphism. Then

(a) Im(θ) is a subring of S;
(b) Ker(θ) is an ideal of R;
(c) R/Ker(θ) ∼= Im(θ).

Proof We have already shown (a) and (b). For (c), there is only one reasonable
definition of a map φ fromR/I to S, where I = Ker(θ): we must put (I + x)φ = xθ
for all x ∈ R. As usual, we have to show that this is well defined. So let x1 and x2 be
representatives of the same coset of I, so that x2 = x1 + a for some a ∈ I. Then

x2θ = (x1 + a)θ = x1θ + aθ = x1θ,

since aθ = 0; so (I + x1)φ = (I + x2)φ, and φ is indeed well defined.
To show that φ is a homomorphism, we have

(I + (x+ y))φ = (x+ y)θ = xθ + yθ = (I + x)φ+ (I + y)φ,

(I + xy)φ = (xy)θ = (xθ)(yθ) = ((I + x)φ)((I + y)φ).

Now φ is clearly onto Im(θ), since for any s ∈ Im(θ) we have s = xθ = (I+x)φ.
Finally, suppose that (I + x)φ = (I + y)φ. Then xθ = yθ, so (y − x)θ = 0; thus
y − x ∈ Ker(θ), and x and y represent the same coset of Ker(θ).

There are two further ‘Isomorphism Theorems’ relating a ring R to a factor
ring R/I.

Theorem 2.11 (Second Isomorphism Theorem) Let I be an ideal of R.
There is a one-to-one correspondence between the set of subrings of R which
contain I and the set of subrings of R/I. Under this correspondence, ideals of R
containing I correspond to ideals of R/I.

Proof If S is a subring of R containing I, then any coset of I with a
representative in S is completely contained in S. (For, if I ⊆ S and x ∈ S,
then I + x ⊆ S by closure of S.) Moreover, I is an ideal of S, since it is closed
under subtraction and under multiplication by elements of S. So the factor ring
S/I is the set of all cosets of I in S, and is a subring of R/I (as it is a ring in
its own right). Conversely, let T be a subring of R/I. Then T is a set of cosets
of I; the union of all these cosets is a subset T̂ of R, which is easily seen to be
a subring of R containing I. Hence we have the one-to-one correspondence. The
further statement about ideals is an easy exercise.

Theorem 2.12 (Third Isomorphism Theorem) Let I be an ideal of R and
S a subring of R. Then

(a) I + S = {a+ s : a ∈ I, s ∈ S} is a subring of R containing I;
(b) I ∩ S is an ideal of S;
(c) S/(I ∩ S) ∼= (I + S)/I.
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Rings 83

Proof All this can be proved directly; but a little trick, based on the natural
homomorphism θ : R→ R/I, makes it easier. We let φ be the restriction of θ to
S. That is, φ maps S to R/I, and the value sφ for s ∈ S is just sθ. (We simply
forget how θ acts on elements outside S.) Clearly, φ is a homomorphism: the two
conditions in the definition hold for arbitrary elements of R, and so certainly for
all elements of S.

(a) What is the image of φ? We see that Im(φ) consists of all cosets
I + s for which the representative is in S. These form a subring of R/I, by
Theorem 2.10(a). The union of all these cosets is the set

{a+ s : a ∈ I, s ∈ S} = I + S

by Theorem 2.11; so I + S is a subring of R which contains I. Incidentally, we
see that Im(φ) = (I + S)/I.

(b) What is the kernel of φ? We see that Ker(φ) consists of all the elements
of S mapped to zero by θ. Since Ker(θ) = I, we have Ker(φ) = I ∩ S, which is
thus an ideal of S, by Theorem 2.10(b).

(c) By Theorem 2.10(c), S/Ker(φ) ∼= Im(φ); that is, S/(I ∩ S) ∼= (I + S)/I,
as required.

These theorems are quite abstract, and the proofs are very condensed. Here
is an example in detail.

Example Let R = Z, and let I be the ideal 4Z. The cosets of I are the
congruence classes mod 4. For simplicity, we will write the class 4Z+k as k (being
careful to distinguish between the integer and the coset). Now the addition and
multiplication tables of Z4 = Z/4Z are as follows (ignore the underlines for the
moment):

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

· 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

Now 2Z is a subring of Z containing 4Z: the corresponding subring of Z/4Z is
the set of cosets containing even numbers. These are the underlined cosets in the
tables above: inspection of the tables shows that we do indeed have closure, so
that {0, 2} is a subring of Z/4Z, as it should be by Theorem 2.11. (Indeed, it is
an ideal, also in accordance with that Theorem.)

Let S = 6Z, a subring of R = Z, and I the ideal 4Z. Then

I + S = {4x+ 6y : x, y ∈ Z} = 2Z,

the subring of R containing I described above. Also, 4Z ∩ 6Z = 12Z, since
an integer is divisible by both 4 and 6 if and only if it is divisible by 12. So
Theorem 2.12 asserts that 6Z/12Z ∼= 2Z/4Z. The second of these factor rings
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84 Rings

consists of the underlined elements in the above tables; the first has the following
tables:

+ 0 6
0 0 6
6 6 0

· 0 6
0 0 0
6 0 0

(Note that 6 · 6 = 36 ≡12 0.) Inspection shows that the two factor rings are
indeed isomorphic, by the correspondence 0 ↔ 0, 2 ↔ 6.

2.9 Polynomials. Like sets, polynomials are easy to understand, but diffi-
cult to define; we must make the attempt.

Usually, a polynomial is written as a sum of terms, where each term is a
product of a coefficient and a power of an ‘indeterminate’ x. Traditionally, the
coefficients are real numbers, and a polynomial is regarded as a function from
R to R. In keeping with the spirit of abstract algebra, we allow the elements of
any ring R as coefficients; and we do not care what a polynomial really is, as
we are only interested in the rules for adding and multiplying polynomials. (In
fact, over some rings, different polynomials define the same function. We saw in
Section 2.2 that x2 = x for all elements x of a Boolean ring R; so the polynomials
x and x2 would define the same function.)

Clearly, a polynomial is specified by giving its coefficients. But even these
are not uniquely determined. If a polynomial has degree n, we can add to it an
extra term 0xn+1 without changing it. Accordingly, we allow a polynomial to
have infinitely many terms, but specify that in all but a finite number of them
the coefficient is zero.

Now we are ready for the formal definition.
A polynomial over a ring R is an infinite sequence (a0, a1, a2, . . .) of elements

of R, indexed by the non-negative integers, with the property that there exists
an integer n such that ai = 0 for all i > n. In accordance with the usual notation,
we write the sequence (a0, a1, a2, . . .) as a0 + a1x + a2x

2 + · · · , or (if n is as in
the definition) as

∑n
i=0 aix

i.
Addition and multiplication of polynomials are defined by the ‘usual’ rules

(essentially the ones we saw in Chapter 1):

(∑
aix

i
)
+

(∑
bix

i
)
=

∑
cix

i, where ci = ai + bi,

(∑
aix

i
)
·
(∑

bix
i
)
=

∑
dix

i, where di =
i∑

j=0

ajbi−j .

We let R[x] denote the set of polynomials over R, with the above addition and
multiplication.

Theorem 2.13 For any ring R, R[x] is a ring. It is commutative if and only
if R is commutative; it has an identity if and only if R has an identity; but it is
never a division ring.
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The proof involves checking all the axioms; it will not be given here. The
important thing to note is that the closure laws hold: adding and multiplying
polynomials produce a sequence which has only finitely many non-zero terms,
hence again a polynomial. Indeed, if we define the degree deg(f) of a non-zero
polynomial to be the greatest integer n for which the coefficient of xn is non-zero,
then we have

deg(f + g) ≤ max(deg(f),deg(g)),

deg(fg) ≤ deg(f) + deg(g).

(We do not define the degree of the zero polynomial, since it has no non-zero
terms at all. Some people would define its degree to be −∞, while others would
say −1; but these are mere conventions.)

A constant polynomial is a polynomial
∑
aix

i with ai = 0 for i > 0. In
other words, the constant polynomials are the zero polynomial and the poly-
nomials whose degree is zero. They form a subring of R[x] isomorphic to R.
Often, we don’t distinguish carefully between the ring element r and the constant
polynomial r =

∑
aix

i with a0 = r and ai = 0 for i > 0.

Remarks 1. If we consider all the infinite sequences of elements of R, without
imposing the restriction that only finitely many are non-zero, and use the same
definitions of addition and multiplication, we obtain another important ring, the
formal power series ring over R, denoted R[[x]]. (The word ‘formal’ signifies
that we do not attempt to sum the power series, and are not concerned with
questions of convergence.)
2. Here is another definition of polynomials, which avoids the need to consider
infinite sequences at the expense of another complication. Let X denote the set
of all finite sequences (a0, a1, . . . , an) of elements of R. (The number n can take
any value. In particular, we include the empty sequence, which has no terms at
all.) Now we define a relation E on X by the rule that (s, t) ∈ E if t can be
obtained from s by either adding or deleting any number of zeros from the right-
hand end of the sequence. It can be shown that E is an equivalence relation; its
equivalence classes are polynomials. To add or multiply polynomials f and g,
we choose representative sequences s = (a0, . . . , an) and t = (b0, . . . , bm) from
the equivalence classes f and g. We may assume that m = n, by adding zeros to
the shorter sequence. Now define f + g to be the equivalence class of s+ t, and
fg the equivalence class of st, where addition and multiplication of sequences
is defined as before. It can be shown that these operations do not depend on
the choice of representatives of the equivalence classes, so that they are well
defined; and that, with these operations, the set of equivalence classes is a ring.
Furthermore, this ring is isomorphic to the ring of infinite sequences which we
defined before.
3. The upshot of this section is that you already understand polynomials, and
you should think of them just as you did before; but they can be put on a proper
theoretical basis, with some work.
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Exercise 2.12 Let I be an ideal of a ring R. Prove that Mn(I) (the set of n × n
matrices with elements in I) is an ideal of Mn(R). (For an easier question, do the case
n = 2.) Prove also that Mn(R)/Mn(I) ∼=Mn(R/I).

Exercise 2.13 Let I be an ideal in a commutative ring R. Prove that I[x] (the ring
of polynomials over I) is an ideal in R[x]. Prove also that R[x]/I[x] ∼= (R/I)[x].

Exercise 2.14 (∗) Let R be a ring with identity. Suppose that J is an ideal inMn(R).
Prove that there is an ideal I of R such that J =Mn(I). [Hint: let Eij be the matrix
unit with 1 in row i and column j and 0 everywhere else. Prove that, if A = (aij),
then EkiAEjl has entry aij in the (k, l) position and zeros elsewhere. Now let I be the
set of all elements of R which appear as an entry in some matrix of J . Show that, for
any r ∈ I, the matrix with r in the top-left corner and 0 elsewhere belongs to J . Hence
show that I is an ideal, and that J =Mn(I).]

Exercise 2.15 (a) Show that, in the ring Z, mZ contains nZ if and only if m divides n.
(b) How many ideals does the ring Z60 have? How many of these ideals are maximal

(in the sense that I is maximal if I �= R but no ideal J satisfies I ⊂ J ⊂ R)?
(c) Repeat part (b) for the ring Zn, where n = pa1

1 · · · par
r and p1, . . . , pr are distinct

primes, and a1, . . . , ar are positive integers.

Exercise 2.16 (a) Prove that the Gaussian integers, the complex numbers of the
form a+ bi, where a, b are integers, form a subring of C.

(b) Prove that the Eisenstein integers, the complex numbers of the form a +
b
√−3, where either a, b are integers or a − 1

2 , b − 1
2 are integers, form a subring of C.

(So, for example, 1 +
√−3 and − 1

2 + 5
2

√−3 are Eisenstein integers but 1
2 − √−3 is

not.)

Exercise 2.17 Let R be a commutative ring and u ∈ R. Show that the map θ :
R[x] → R defined by ‘substituting u for x’; that is,

∑
aix

i �→ ∑
aiu

i, is a
homomorphism.

Exercise 2.18 Let R be the ring R[x] of all real polynomials. Define a function θ :
R → C by the rule that fθ = f(i). Prove that θ is a homomorphism, that its image is
C, and that its kernel is the ideal (x2 + 1)R consisting of all polynomials divisible by
x2 + 1. Hence show that

R[x]/(x2 + 1)R[x] ∼= C.

Exercise 2.19 Construct a homomorphism from Zmn to Zn, for any positive integers
m,n.

Exercise 2.20 Let Y be a subset of the set X. Let P(X) and P(Y ) be the Boolean
rings of subsets of X and Y , respectively. Show that the map θ : P(X) → P(Y ) defined
by Aθ = A ∩ Y is a homomorphism, and find its image and kernel.

Exercise 2.21 Let R be the ring of real upper-triangular 2× 2 matrices (those of the

form
(
a b
0 c

)
for a, b, c ∈ R). Let I be the set of strictly upper-triangular matrices (of

the form
(
0 b
0 0

)
) and S the set of diagonal matrices (of the form

(
a 0
0 c

)
).
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(a) Prove that I is an ideal of R.
(b) Prove that S is a subring of R. Is it an ideal?
(c) Prove that R/I is isomorphic to S.

Factorisation
One of the most important properties of the integers is the so-called Fundamental
Theorem of Arithmetic, which asserts that any integer can be factorised into
primes in an essentially unique way. We want to examine the rings in which such
a result could hold.

2.10 Zero-divisors and units. In contrast to the situation in Z, it can
happen in an arbitrary ring that the product of two non-zero elements is zero.
For example, 2 · 2 = 0 in Z4, and

(1 0
0 0

)(0 0
0 1

)
=

(0 0
0 0

)
in M2(R). For much of the

rest of this chapter, we are especially interested in rings in which this does not
happen. Accordingly, we define it away:

• A zero-divisor in a ring R is a non-zero element a ∈ R such that there
exists a non-zero element b ∈ R with ab = 0.

• An integral domain is a commutative ring with identity which has no
zero-divisors.

Strictly speaking, in the first definition, a is a left zero-divisor, and b is a right
zero-divisor; but, as the second definition suggests, we are mostly interested
in commutative rings, and in these, the concepts of left and right zero-divisor
coincide.

The condition ‘no zero-divisors’ can also be stated in the form: if ab = 0, then
either a = 0 or b = 0. Thus, Z, our prototype of a ring, is also our prototype of an
integral domain, as the name would suggest. Integral domains have many nice
properties. For example, there is a multiplicative version of the cancellation
law:

(C′) In an integral domain, if ab = ac and a �= 0, then b = c.

For, if ab = ac, then a(b − c) = 0; in an integral domain, if a �= 0, this implies
that b− c = 0; that is, b = c.

Let R be a ring with identity. The element a ∈ R is a unit if there exists
b ∈ R with ab = ba = 1. The element b is called the inverse of a, and is written
a−1. It is unique; for if b and c are both inverses of a, then

c = 1c = (ba)c = b(ac) = b1 = b.

You should compare this with the proof of uniqueness of additive inverses in
Section 2.3.

Proposition 2.14 Let R be a ring with identity.
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88 Rings

(a) The identity is a unit; it is equal to its inverse.
(b) If a is a unit, then so is a−1; its inverse is a.
(c) If a and b are units, then so is ab; its inverse is b−1a−1.

Proof (a) 1 · 1 = 1.
(b) This is shown by the equations aa−1 = a−1a = 1.
(c) We have

(ab)(b−1a−1) = a(bb−1)a−1 = a1a−1 = aa−1 = 1,

and, similarly, (b−1a−1)(ab) = 1.

Here is how Hermann Weyl explains part (c) of this proposition in his book
Symmetry (1952).

With this rule, although perhaps not with its mathematical expres-
sion, you are all familiar. When you dress, it is not immaterial in
which order you perform the operations; and when in dressing you
start with the shirt and end up with the coat, then in undressing
you observe the opposite order; first take off the coat and the shirt
comes last.

Examples 1. A ring with identity is a division ring if and only if every non-zero
element is a unit.

2. The units in Z are 1 and −1.
3. In the next proposition, we find the zero-divisors and units in the ring Zn

of integers mod n, where n > 1.

Proposition 2.15 An element x �= 0 of Zn is a zero-divisor if and only if x
and n have greatest common divisor (g.c.d.) greater than 1; it is a unit if and
only if x and n have greatest common divisor 1.

In other words, in Zn, every non-zero element is either a zero-divisor or a
unit (but not both, see Exercise 2.22).

Proof Suppose that d = gcd(x, n) is the greatest common divisor of x and n.
(a) If d > 1, then (n/d) is a non-zero element of Zn; and x(n/d) =

(x/d)n ≡n 0.
(b) Suppose that d = 1. By the Euclidean algorithm, there are integers p and

q such that xp+ nq = 1. But this means that xp = px ≡n 1, so that x is a unit
(and p is its inverse).

Conversely, if x is a zero-divisor, then x is not a unit, so d is not 1 — that
is, d > 1 — and similarly for (b).

Two elements a, b of the integral domain R are said to be associates if there
is a unit u ∈ R such that b = au. Note that, by the above Proposition, it follows
that being associates is an equivalence relation: it is
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• reflexive, since a = a1;
• symmetric, since b = au implies a = bu−1;
• transitive, since b = au and c = bv imply c = a(uv).

(Here u and v are units; and the proposition shows that 1, u−1 and uv are units.)
By the Equivalence Relation Theorem, R is partitioned into equivalence

classes, called associate classes.
For example, in Z, the associate classes are the sets {n,−n} for all non-

negative integers n.

2.11 Irreducibles and factorisation. In this section, we examine the pos-
sibility of factorising elements of a ring into ‘irreducible’ elements (which cannot
themselves be further factorised), and look at a special class of rings in which
the analogue of the Fundamental Theorem of Arithmetic holds.

First, we will make some simplifying assumptions about the ringR. We always
assume that R is commutative, so that we can regard ab and ba as essentially the
same factorisation of a ring element. (So, in a factorisation, we do not care about
the order of the factors.) Also, we exclude divisors of zero. For, if ab = 0, then
ac = a(b+c) for any element c, and there is little chance of unique factorisations.

Accordingly, we assume, in this section and the next two, that

R is an integral domain.

Also, units provide another problem. In Z, we regard 2 · 3 and (−2) · (−3)
as ‘essentially the same’ factorisation of 6. More generally, if x = ab, and u is a
unit with inverse v, then x = (au)(vb), and we want to think of this as the same
factorisation. We note that a and au are associates, as are b and vb. So we think
of two factorisations as the same if the factors in one are associates of factors
in the other. For the same reason, we do not regard units as counting towards a
factorisation, or we could multiply them ad infinitum.

This leads us to the appropriate definitions.

Definition Let R be an integral domain.

• An element p ∈ R is irreducible if p is not zero or a unit, and if, whenever
p = ab, either a or b is a unit (and the other is an associate of p).

• R is a unique factorisation domain or UFD if it holds that
(a) every element other than zero and units can be factorised into

irreducibles;
(b) if p1 · · · pm = q1 · · · qn, where the pi and qj are irreducibles, thenm = n,

and (possibly after re-ordering) pi and qi are associates for i = 1, . . . , n.

Briefly, condition (a) says that factorisations into irreducibles exist, while (b)
says that they are ‘unique up to order and associates’. (Note that any associate
of an irreducible is irreducible.)

So the ‘Fundamental Theorem of Arithmetic’ says that Z is a UFD. (We
will prove this later, in Section 2.13.) However, things here are a little different
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90 Rings

from our first view of the FTA. Instead of factorising positive integers into pos-
itive primes, we factorise arbitrary integers into arbitrary (positive or negative)
primes—remember that p and −p are associates.

In a trivial way, a field is a UFD: it does not have any elements which are
not zero or units!

One of the most substantial results about UFDs is the following:

Theorem 2.16 (Gauss’ Lemma) If R is a UFD, then R[x] is a UFD.

The proof of this result will be given in Chapter 7.
In particular, if F is a field, then F [x] is a UFD. This will be proved in

Section 2.13, since it uses techniques similar to those for Z.
An important property of UFDs is that ‘greatest common divisors exist’.

In the case of the integers, we interpret the word ‘greatest’ in its usual sense
for numbers. In general, this is not possible; the greatest common divisor is a
common divisor which is divisible by every common divisor, in a sense which the
next definition makes precise.

Definition Let R be a commutative ring.

• For a, b ∈ R, we say that a divides b (in symbols, a | b) if b = ac for some
c ∈ R.

• The element d is a greatest common divisor or g.c.d. of a and b if
(a) d divides a and d divides b;
(b) for any e ∈ R, if e divides a and e divides b then e divides d.

Thus, the greatest common divisor is not necessarily greatest in any absolute
sense. In an arbitrary ring, two elements may have no greatest common divisor
at all.

Theorem 2.17 (a) In an integral domain, if a divides b and b divides a, then
a and b are associates.

(b) In an integral domain, if a and b have a greatest common divisor, then any
two g.c.ds are associates.

(c) In a unique factorisation domain, every two elements have a greatest
common divisor.

Proof (a) If a = 0 then b = 0 and there is nothing to prove. So suppose not.
Let b = ac and a = bd, then a = acd, so a(1− cd) = 0. Since a �= 0 and R is an
integral domain, cd = 1; so c and d are units, and a and b are associates.

(b) If d1 and d2 are both g.c.ds of a and b, then (by part (b) of the definition)
each divides the other; so they are associates.

(c) Assume that a and b are non-zero and not units. (Can you deal with
the remaining cases?) Factorise a into irreducibles. Then, up to associates, every
divisor of a is a product of some of the irreducibles in the factorisation of a.
(For suppose that a = xy. Factorise x and y into irreducibles. Combining these
gives a factorisation of a, which must be equal to the given one, up to order
and associates.) So we find the g.c.d. of a and b by factorising both elements
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Rings 91

into irreducibles, and taking all the irreducibles which (up to associates) occur
in both factorisations.

If this sounds somewhat complicated, it is just a generalisation of the arg-
ument which says, for example, that the g.c.d. of 24.32.52.7 and 23.33.5.11 is
23.32.5.

This method finds the greatest common divisor, in principle. But it is not
really an algorithm, since it depends on finding the factorisations of a and b, and
we do not know how to do this in an arbitrary UFD (only that it can be done).

We conclude this section with an example of failure of the unique factorisation
property.

Example Let R = {a + b
√−5 : a, b ∈ Z}. Then R is a ring, with the usual

definition of addition and multiplication of complex numbers. Moreover, R is an
integral domain.

We first find the units of R. Let a+ b
√−5 be a unit; suppose that

(a+ b
√−5)(x+ y

√−5) = 1.

Taking the square of the modulus of this equation (and using the fact that
|a+ b

√−5|2 = a2 + 5b2), we obtain

(a2 + 5b2)(x2 + 5y2) = 1.

Since a, b, x, y are integers, the only possibility is b = y = 0, a2 = x2 = 1, so
that a = ±1. So the units are 1 and −1, and the associates of an element r are
r and −r.

Consider the equation

6 = 2 · 3 = (1 +
√−5)(1−√−5).

We claim that all of the factors 2, 3, 1 +
√−5, 1 − √−5 are irreducible. Then

certainly the factorisations are not the same up to order and associates!
To show that 2 is irreducible, suppose that

2 = (a+ b
√−5)(x+ y

√−5).

Taking the norm squared as before, we obtain

4 = (a2 + 5b2)(x2 + 5y2).

As before, this implies that b = y = 0, so that a = ±1 or ±2, and x = ±2 or ±1.
So one factor is a unit, and the other is an associate of 2. So 2 is irreducible. By
a very similar argument, all the other factors are irreducible too.

So R is not a unique factorisation domain.
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92 Rings

2.12 Principal ideal domains or PIDs. In the ring Z, every ideal consists
of all multiples of a fixed integer. This is a very important property, which we
now study in general.

Definition Let a1, . . . , an be elements of a ring R. The ideal generated by
a1, . . . , an, denoted by 〈a1, . . . , an〉, is the smallest ideal containing these ele-
ments. (‘Smallest’ has the sense of inclusion; it is a subset of every ideal that
contains a1, . . . , an.) Be aware that this is often written as (a1, . . . , an). However,
this risks confusion with the n-tuple (a1, . . . , an). Angle brackets as used here
are very common in mathematics to convey the idea of generation.

From the definition, it is not obvious that such an ideal exists. It can be
shown that it does exist in any ring. But in a special case, it is easy to describe:

Proposition 2.18 Let R be a commutative ring with identity, and let a1, . . . , an
be elements of R. Then

〈a1, . . . , an〉 = {x1a1 + x2a2 + · · ·+ xnan : x1, . . . , xn ∈ R}.

Proof Let I = {x1a1 + · · · + xnan : x1, . . . , xn ∈ R}, the set of all linear
combinations of a1, . . . , an. We have to show that I is an ideal, that I contains
a1, . . . , an, and that any ideal containing a1, . . . , an necessarily contains all of I.

I is an ideal: (a) if a, b ∈ I, say a = x1a1+· · ·+xnan and b = y1a1+· · ·+ynan,
then

a− b = (x1 − y1)a1 + · · ·+ (xn − yn)an ∈ I.
(b) If a = x1a1 + · · ·+ xnan ∈ I and r ∈ R, then

ar = ra = (rx1)a1 + · · ·+ (rxn)an ∈ I.

So I passes the Ideal Test.
I contains a1, . . . , an: for 1 ≤ i ≤ n, we have

ai = 0a1 + · · ·+ 0ai−1 + 1ai + 0ai+1 + · · ·+ 0an ∈ I.

Any ideal containing a1, . . . , an contains I: Let J be an ideal of R containing
a1, . . . , an. For any x1, . . . , xn ∈ R, we have xiai ∈ J , and hence x1a1 + · · · +
xnan ∈ J (using the fact that J is an ideal, and so is closed under addition and
under multiplication by elements of R). So every element of I is in J , which
means that I ⊆ J .

An ideal of R is principal if it is generated by a single element. By the
proposition, if R is a commutative ring with identity, then a principal ideal is of
the form 〈a〉 = aR = {ax : x ∈ R}. In other words, 〈a〉 consists of all elements
divisible by a. In an integral domain, principal ideals have some further nice
properties:

Proposition 2.19 Let R be an integral domain.
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Rings 93

(a) For a, b ∈ R, if 〈a〉 = 〈b〉, then a and b are associates.
(b) For a, b ∈ R, if 〈a, b〉= 〈d〉, then d is a greatest common divisor of

a and b.

Proof (a) Suppose that 〈a〉 = 〈b〉. Then a ∈ 〈b〉 = bR, so b divides a, and
similarly a divides b. By Theorem 2.17, a and b are associates.

(b) Suppose that 〈a, b〉 = 〈d〉. Then a, b ∈ 〈d〉, so (as above) d divides both
a and b. On the other hand, d ∈ 〈a, b〉, so d = ax + by for some x, y ∈ R. Let e
be any common divisor of a and b. Then a = eu and b = ev for some u, v. Then
we have d = ax + by = eux + evy = e(ux + vy); that is, e divides d. So d is a
greatest common divisor.

Definition A principal ideal domain or PID is an integral domain with the
property that every ideal is principal.

Proposition 2.20 (a) Let R be a PID. Then any two elements a, b ∈ R have
a greatest common divisor d, which can be written in the form d = ax+ by
for some x, y ∈ R.

(b) Z is a PID.

Proof (a) The ideal 〈a, b〉 is principal, and hence has the form 〈d〉 for some d.
Now apply part (b) of the previous proposition.

(b) We found that every ideal of Z has the form nZ, that is, 〈n〉 in the present
notation.

What has all this to do with factorisation? The following important result
holds:

Theorem 2.21 Every principal ideal domain is a unique factorisation domain.

Proof Let R be a PID. We have to show two things: that elements of R can be
factorised into irreducibles; and that the factorisation of an element is unique (up
to order and associates). The first part is quite substantial; the proof is deferred
until Chapter 7. I will show here that factorisations are unique. This depends on
the following fact.

Proposition 2.22 Let p be an irreducible element in a PID R. If p divides ab,
then p divides a or p divides b.

Proof Suppose that p divides ab but p does not divide a. Then the greatest
common divisor of p and a is 1. (Remember that g.c.ds exist in a PID.) So there
exist x, y ∈ R such that px+ ay = 1. Multiplying this equation by b, we obtain
pxb + aby = b. Now p clearly divides pxb; and p divides aby (since p divides ab
by assumption); so p divides b. The result is proved.

It follows that if p is irreducible and p divides a1 · · · an, then p divides ai for
some i.
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94 Rings

This property fails in the ring R = {a + b
√−5 : a, b ∈ Z} discussed in the

preceding section. For 2 divides 6 = (1+
√−5)(1−√−5), but 2 does not divide

either factor.
Now we return to the proof that a PID is a UFD. Suppose that we have two

factorisations of an element of the PID R, say

a = p1p2 · · · pm = q1q2 · · · qn,

where the pi and qj are irreducible. Now p1 divides q1 · · · qn, so by the remark
following the proposition, p1 divides qj for some j. By re-ordering the product,
we can assume that p1 divides q1. Since p1 and q1 are irreducible, they must be
associates, say p1 = q1u for some unit u. Then we have

p1p2 · · · pm = (q1u)(u−1q2) · · · qn.

By the Cancellation Law,

p2 · · · pm = q′
2 · · · qn,

where q′
2 = u−1q2, an associate of q2. Continuing in this manner we find that

m = n and that pi and qi are associates for all i (after suitable re-ordering), and
we are done.

We close this section with an example of a UFD which is not a PID. This is
the ring Z[x] of polynomials over the integers. It is a UFD by Gauss’ Lemma. The
g.c.d. of the elements 2 and x is obviously 1; but there do not exist polynomials
f and g such that 2f(x) + xg(x) = 1, since the constant term of the left-hand
side is even. Said otherwise, the ideal 〈2, x〉 generated by 2 and x (which is the
set of all polynomials whose constant term is even) cannot be generated by a
single element.

2.13 Euclidean domains or EDs. We now look at an even more specialised
class of rings (which, however, includes our prototype Z as well as polynomial
rings over fields).

Definition Let R be a commutative ring with identity.

• A Euclidean function on R is a function d from the set of non-zero
elements of R to the non-negative integers which satisfies
(a) d(ab) ≥ d(a) for a, b �= 0;
(b) if a, b ∈ R with b �= 0, then there exist q, r ∈ R with a = bq + r and

either r = 0 or d(r) < d(b).
• R is a Euclidean domain, if there exists a Euclidean function on R.

Examples 1. Z is a ED. Take d(a) = |a| for non-zero a ∈ Z. If also b �= 0, then
clearly

d(ab) = |ab| = |a| · |b| = d(a)d(b) ≥ d(a),
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Rings 95

since d(b) ≥ 1. For (b), suppose that b �= 0. If b > 0, divide a by b to obtain a
quotient q and remainder r; then a = bq + r with 0 ≤ r < b; that is, r = 0 or
d(r) < d(b) = b. If b < 0, divide a by −b instead.

2. For any field F , the polynomial ring F [x] is a ED. In this case, we take
the Euclidean function to be d(f) = deg(f), the degree of the polynomial f .
(Recall that we did not define deg(f) if f = 0, but we do not need a value for
d(0) either.)

(a) If f, g are non-zero, then d(fg) = d(f) + d(g) ≥ d(f).
(b) Suppose that g �= 0; we wish to find q, r with f = gq + r and r = 0 or

deg(r) < deg(g). The proof is by induction on the degree of f . Let m = deg(f),
n = deg(g). If m < n, we can take q = 0 and r = f . So suppose that m ≥ n. Let

f(x) = amx
m + lower terms,

g(x) = bnx
n + lower terms,

where am and bn are non-zero. Put

f1(x) = f(x)− (amb−1
n )xm−ng(x).

(This is defined since the coefficients form a field and bn �= 0.) The coefficient of
xm in f1 is am− (amb−1

n )bn = 0, and clearly there are no terms of higher degree.
So deg(f1) < m = deg(f). By the induction hypothesis, we have f1 = gq1 + r1,
where r1 = 0 or deg(r1) < deg(g). Then

f = g(amb−1
n xm−n + q1) + r1;

so we can take q = amb
−1
n xm−n + q1, r = r1.

The reason for the term ‘Euclidean domain’ is that this is the class of rings in
which the Euclidean Algorithm for finding the greatest common divisor of two
elements can be made to work. We met the Euclidean Algorithm for integers in
Chapter 1. The general case is exactly the same. I will present it here in a way
influenced by computer programming, as a recursive algorithm. But you do not
need to know anything about computers in order to follow this. Just remember
that an algorithm takes some data as input and produces some other data as
output; we must specify what the algorithm is expected to do, and then we must
prove that the algorithm really does what is claimed.

Euclidean Algorithm Let R be a Euclidean domain.
Input: Two elements a, b ∈ R.
Output: An element c ∈ R which is a greatest common divisor of a and b.

We write c = gcd(a, b) for this output.
Operation: If b = 0, then set gcd(a, b) = a.
Otherwise, choose q, r ∈ R such that a = bq + r with either r = 0 or d(r) <

d(b); set gcd(a, b) = gcd(b, r).
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It is not clear that we have defined anything: why should gcd(b, r) be easier
to calculate than gcd(a, b)? Imagine that we are given two elements a and b,
and are trying to find gcd(a, b). If b = 0, we obtain immediately the result a.
Suppose not. Now observe that either r = 0, in which case we finish at the second
step, or we have to calculate gcd(b, r) with d(r) < d(b). During the calculation,
the second alternative can only occur finitely often, since the value of d on the
second argument of the function is strictly smaller at each instance, and a strictly
decreasing sequence of non-negative integers cannot continue for ever. So, after
a finite number of steps, the algorithm does terminate and produce a result.

Now, we have to show that it gives the correct result. The proof is by induction
on d(b) (taking the base case of the induction to be b = 0). In order to do this,
we need to show two things:

(a) the greatest common divisor of a and 0 is a;
(b) if a = bq + r, then the greatest common divisor of a and b is equal to the

greatest common divisor of b and r (up to associates).

The first fact should be clear if a �= 0; you should think about it and convince
yourself that it also holds if a = 0. (Use the definition of greatest common divisor,
rather than any prejudices about greatest integers, etc.)

For the second point, observe that any divisor of a and b also divides r =
a − bq, while any divisor of b and r also divides a = bq + r. So the set of all
common divisors of a and b is the same as the set of common divisors of b and
r, and the greatest common divisors must be associates, as required.

As we saw in case of the integers, the Euclidean Algorithm has another fea-
ture; it can be used to express the g.c.d. of a and b as a linear combination of
these two elements. This is also true in general:

Enriched Euclidean Algorithm Let R be a Euclidean domain.
Input: Two elements a, b ∈ R.
Output: An element c ∈ R which is a greatest common divisor of a and b,

together with two elements x and y such that c = ax+ by.
Operation: If b = 0, then we set c = a, x = 1, y = 0.
Otherwise, we write a = bq+ r with r = 0 or d(r) < d(b) as usual, and apply

the algorithm to b and r. Suppose that the output is c′, x′, and y′. Then we put
c = c′, x = y′, and y = x′ − y′q.

The proof that this algorithm terminates, and finds the g.c.d. correctly, is
exactly as for the original version. We have to show that c = xa + yb. This is
obvious in the first case of the algorithm. In the second case (arguing, as before,
by induction), we may assume that c′ = bx′ + ry′. Then

c = c′ = bx′ + (a− bq)y′ = ay′ + b(x′ − qy′),

as required.
Now we turn to some theoretical properties of Euclidean domains.

Proposition 2.23 (a) A Euclidean domain is an integral domain.
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(b) If R is a Euclidean domain and a, b are non-zero elements with a | b and
d(b) = d(a), then a and b are associates.

Proof (a) If a and b are non-zero, then d(ab) ≥ d(a), so ab �= 0.
(b) By condition (b), a = bq + r, where r = 0 or d(r) < d(a). Suppose that

r �= 0. Then a divides b, so a divides r = a− bq; by condition (a), d(r) ≥ d(a), a
contradiction. So we must have r = 0, whence a = bq. So each of a and b divides
the other, and these elements are associates.

Now we come to the main result:

Theorem 2.24 (a) A Euclidean domain is a principal ideal domain.
(b) A Euclidean domain is a unique factorisation domain.

Proof (a) Let R be a Euclidean domain. Take any ideal I ∈ R: we have to
show that I is a principal ideal. The argument is similar to our determination
of the ideals in Z. First, 0 ∈ I; and, if I consists only of 0, then I = 〈0〉, and
so I is principal. So we may suppose that I contains some non-zero elements.
Choose an element a ∈ I such that d(a) is as small as possible. (This depends
on the fact that the values of d are non-negative integers, so there is necessarily
a smallest one.) We claim that I = 〈a〉. As usual, we have to show that any
element of either set is contained in the other. First, take x ∈ 〈a〉; then x is of
the form x = ar for some r ∈ R, and so x ∈ I (since a ∈ I and I is an ideal).
Conversely, take x ∈ I. By part (b) of the definition of a Euclidean function,
we write x = aq + r, where r = 0 or d(r) < d(a). Now x ∈ I and aq ∈ I, so
r = x − aq ∈ I; and, since a was chosen as an element of I with d(a) as small
as possible, it cannot happen that d(r) < d(a), so we must have r = 0, and
x = aq ∈ 〈a〉. Thus indeed I = 〈a〉.
(b) If we had proved Theorem 2.21, this would immediately follow from (a). Since
we didn’t do that, we have some work to do. We showed that factorisation is
unique (up to order and associates) in any PID; so we only have to do the other
part, to prove that any element (other than zero and units) has a factorisation
in R. So take a ∈ R with a �= 0 and a not a unit. We show by induction on d(a)
that a has a factorisation. In other words, we assume that any element b with
d(b) < d(a) has a factorisation.

If a is irreducible, then we have a factorisation (with only one factor!), so
suppose that a = bc, where neither b nor c is a unit. Now by condition (a),
d(b) ≤ d(a) and d(c) ≤ d(a). If d(b) < d(a) and d(c) < d(a), then by the inductive
hypothesis, both b and c have factorisations; combining these gives a factorisation
of a. So we can suppose that d(b) = d(a). But then a and b are associates, by
part (b) of the Proposition: a contradiction. The proof is finished.

Let us summarise our findings. We have three classes of integral domains:

• unique factorisation domains;
• principal ideal domains;
• Euclidean domains.
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Theorems 2.21 and 2.24 show that

ED ⇒ PID ⇒ UFD.

We see the increasing strength of these conditions by looking at the facts about
greatest common divisors:

• In a UFD, any two elements have a g.c.d.;
• In a PID, any two elements a, b have a g.c.d. d, and d = xa + yb for some
x, y;

• In a ED, any two elements a, b have a g.c.d. d, and d = xa + yb for some
x, y; moreover, d, x, y can be found by using the Euclidean Algorithm.

You might expect here an example of a PID which is not a ED. Such rings
do exist; T. S. Motzkin showed that the ring

R = {a+ b
√−19 : either a, b ∈ Z or a− 1

2 , b− 1
2 ∈ Z}

is an example. But the proof is more difficult. (You can read it in volume 55 of
the Bulletin of the American Mathematical Society, starting on page 1142.)

Exercise 2.22 Show that, in a commutative ring with identity, no element can be
both a zero-divisor and a unit.

Exercise 2.23 Write down the associate classes in the ring Z12.

Exercise 2.24 (∗) Find all positive integers m with the property that every unit a in
Zm satisfies a2 = 1.

Exercise 2.25 Let R be an integral domain. Show that the units of R[x] are precisely
the constant polynomials which are units of R.

Exercise 2.26 (a) Let F be a field. Show that a matrix A ∈ Mn(F ) is a unit if
and only if det(A) �= 0; and that a non-zero matrix A is a zero-divisor if and only if
det(A) = 0.

(∗) (b) More generally, let R be a commutative ring with identity. Prove that
A ∈ Mn(R) is a unit if and only if det(A) is a unit in R. [Hint : If det(A) is a unit,
use the ‘cofactor formula’ to find an inverse of A. Conversely, if AB = BA = I, take
determinants to show that det(A) is a unit.]

Exercise 2.27 Let x be an element in a ring with identity, and suppose that xn = 0 for
some positive integer n. Prove that 1+x is a unit. [Hint : (1+x)(1−x+x2−x3+· · · ) = 1.]

Exercise 2.28 (a) Find the greatest common divisor of the real polynomials f(x) =
x2 + 3x+ 2 and g(x) = x5 + 2x4 + 5x3 + 6x+ 2.

(b) Give a simple description of the ideal 〈f(x), g(x)〉 of R[x].

Exercise 2.29 (a) Show that the ring R = {x + yi : a, b ∈ Z} of Gaussian integers is
a Euclidean domain, with Euclidean function d(x+ yi) = x2 + y2. [Hint: For (b), take
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Rings 99

a, b ∈ R with b �= 0, and write a/b = u+ vi in C, where u and v are rational numbers.
Then choose m,n ∈ Z such that

|(u+ vi)− (m+ ni)| ≤ 1/
√
2,

by considering lattice points with integer coordinates in the complex plane.]
(∗) (b) Show that the ring of Eisenstein integers (Exercise 2.16(b)) is a Euclidean

domain, by using the triangular lattice similarly.

Exercise 2.30 (a) Describe the units in the ring of Gaussian integers.
(∗) (b) Show that the irreducibles in the ring of Gaussian integers are of two types:

primes p ∈ Z which cannot be written as the sum of two integer squares; and elements
x+ yi, where x2 + y2 is a prime in Z. (For example, 3 is a ‘Gaussian prime’; 5 is not,
since 5 = (2 + i)(2 − i), but the two factors are both Gaussian primes.)

Remark A theorem of Number Theory asserts that a prime p can be expressed
as the sum of two squares if and only if p = 2 or p ≡4 1.

Fields
Recall that a field is a commutative ring with identity in which division is pos-
sible by non-zero elements. Rings are easy to build: we have seen polynomial
rings, matrix rings, Boolean rings, cartesian products. Almost always, these rings
turn out not to be fields. In fact, there are only two standard methods of con-
structing fields: applied to the integers, they produce the rationals, and the
integers mod p.

2.14 Field of fractions. The first method involves going from a ring to its
‘field of fractions’, which generalises the construction of the rational numbers
from the integers.

Let R be an integral domain. A field F is a field of fractions of R if

(a) R is a subring of F ;
(b) Any element of F can be written in the form ab−1 for some a, b ∈ R (where

b−1 is calculated in F ).

For example, the rational numbers Q form the field of fractions of the integers
Z. Any field is its own field of fractions.

Theorem 2.25 Any integral domain has a field of fractions.

Proof Let R be an integral domain. We let S be the set of all ordered pairs
(a, b) for a, b ∈ R, b �= 0. We intend that the ordered pair (a, b) will represent
the element ab−1. But, of course, ab−1 = cd−1 if (and only if) ad = bc; so we
want the ordered pairs (a, b) and (c, d) to represent the same element of F if this
condition holds. Accordingly, we define an equivalence relation ∼ on S by the
rule

(a, b) ∼ (c, d) if and only if ad = bc.
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100 Rings

We prove that this really is an equivalence relation. First, (a, b) ∼ (a, b), since
ab = ba (R is commutative). Then, if (a, b) ∼ (c, d), then ad = bc, and so cb = da;
this means (c, d) ∼ (a, b). Finally, suppose that (a, b) ∼ (c, d) and (c, d) ∼ (e, f).
Then ad = bc and cf = de. So

adf = bcf = bde,

and by the cancellation law (since d �= 0) we deduce that af = be; so (a, b) ∼
(e, f). So ∼ really is an equivalence relation.

Now we let [a, b] denote the equivalence class of the ordered pair (a, b): [a, b] =
{(c, d) : ad = bc}. Let F be the set of equivalence classes. We define addition
and multiplication on F by the following rules:

[a, b] + [c, d] = [ad+ bc, bd],

[a, b] · [c, d] = [ac, bd].

(To see where these definitions come from, work out what you would expect
(ab−1) + (cd−1) and (ab−1)(cd−1) to be, by the usual rules for fractions.)

We have to check that these operations are well defined, and that they do
indeed make F a field. All of this is straightforward checking. Finally, the map
that takes a to the equivalence class [a, 1] is a one-to-one homomorphism from R
to F , so we can regard R as a subring of F . Moreover, the inverse of the element
[b, 1] is [1, b] if b �= 0; and [a, b] = [a, 1][b, 1]−1. So, if we identify R with its image
in F under this embedding, we see that F is indeed a field of fractions of R.

In fact, the field of fractions is unique (up to isomorphism). This is another
way of saying that the only possible way to construct a field of fractions is the
way we actually did it.

2.15 Maximal ideals and fields. The second method of constructing fields
generalises the passage from the integers to the integers modulo a prime: the field
is constructed as a factor ring. To study this, first we need a different test for
when a ring is a field.

Proposition 2.26 Let R be a commutative ring with identity. Then R is a
field if and only if the only ideals in R are {0} and R itself.

Proof For the forward implication, suppose that R is a field. Take any ideal
I of R. Suppose that I �= {0}; we have to show that I = R, that is, that every
element of R is in I. Certainly, some non-zero element is in I, say a ∈ I. Now,
for any x ∈ R, we have x = (xa−1)a ∈ I. So I = R.

For the converse, let R be a commutative ring with identity whose only ideals
are {0} and R. We have to show that all its non-zero elements have inverses. So
take a ∈ R with a �= 0. Let I be the ideal (a) = aR. Then I �= {0}, since
a ∈ I; so I = R. Thus, 1 ∈ I = aR, so there exists b ∈ R with ab = ba = 1, as
required.
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Rings 101

We say that the ideal I of the ring R is a maximal ideal of R if I �= R
but there is no ideal J properly between I and R; that is, if J is an ideal with
I ⊆ J ⊆ R, then J = I or J = R.

Theorem 2.27 Let R be a commutative ring with identity, and I an ideal of
R. Then R/I is a field if and only if I is a maximal ideal of R.

Proof This follows immediately from the proposition and the correspondence
between ideals of R/I and ideals of R containing I given by the Second
Isomorphism Theorem (Theorem 2.11).

How do we recognise maximal ideals?

Proposition 2.28 Let R be a principal ideal domain, and take a ∈ R with
a �= 0. Then 〈a〉 is a maximal ideal of R if and only if a is irreducible.

Proof In an integral domain, we have 〈a〉 ⊆ 〈b〉 if and only if b divides a, and
〈a〉 = 〈b〉 if and only if a and b are associates. In particular, 〈a〉 = R if and only
if a is a unit (an associate of 1: note that 〈1〉 = R). Hence 〈a〉 is maximal if and
only if every element b which divides a is either an associate of a or a unit; but
this is exactly the condition that a is irreducible. Finally, if R is a principal ideal
domain, then there are no other ideals to spoil the maximality of (a).

Example R = Z. We see that Zn is a field if and only if n is prime. (In fact
we knew this already. For we showed that m is a unit in Zn if and only if m and
n are coprime; and this holds for all non-zero residues mod n if and only if n is
prime.)

We will apply this result to polynomial rings in the next section.

2.16 Field extensions, finite fields. The standard procedure for
constructing the complex numbers from the real numbers is to ‘adjoin’ a square
root of −1; that is, an element i satisfying i2 + 1 = 0. We will now describe this
procedure, ‘adjoining the root of a polynomial’, in more detail.

Theorem 2.29 Let F be a field, and f a polynomial which is irreducible in
F [x]. Then there is a field K containing F and an element α satisfying f(α) = 0.

Proof The construction is simple. We set K = F [x]/〈f〉. This is a field by the
results of the last section: F [x] is a principal ideal domain and we are given that
f is irreducible, so 〈f〉 is a maximal ideal in F [x], and F [x]/〈f〉 is a field.

We have to show that

(a) K contains (a field isomorphic to) F ;
(b) K contains a root α of f .

(a) Set I = 〈f〉. For a ∈ F , let a denote the coset I + a, and let F be the set
of all such cosets. We show that the map a �→ a is an isomorphism from F to F .
It is one-to-one, since if a = b then b − a ∈ 〈f〉, so b − a = 0 (as any non-zero
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102 Rings

element of 〈f〉 has degree at least as great as that of f). The homomorphism
property is clear.

(b) We take α to be the coset I + x. Let

f(x) = anx
n + · · ·+ a1x+ a0.

Then

f(α) = an(I + x)n + · · ·+ a1(I + x) + a0(I + 1)

= (I + anx
n) + · · ·+ (I + a1x) + (I + a0)

= I + (anxn + · · ·+ a1x+ a0)

= I + f(x)

= I

and we are done, since I is the zero element of F [x]/I.

Our proof shows that a field with the required properties exists. However, it
is defined as a factor ring, which is not the most convenient form for calculation.
As always, calculation in a factor ring is very much easier if we can make a good
choice of coset representatives!

Let f be an irreducible polynomial of degree n > 0 over the field F . We claim
that every coset of the ideal 〈f〉 in F [x] has a unique representative r satisfying
r = 0 or deg(r) < n. Such an r exists because of the Euclidean property of F [x].
(If g is any polynomial, and g = fq+r, then g and r differ by a multiple of f , and
so 〈f〉+ g = 〈f〉+ r.) If r1 and r2 are two representatives of the same coset with
ri = 0 or deg(ri) < n for i = 1, 2, then 〈f〉+ r1 = 〈f〉+ r2, so r1 − r2 ∈ 〈f〉; this
means that f divides r1−r2. But since deg(f) = n, this implies that r1−r2 = 0,
so r1 = r2.

Moreover, a simple argument (similar to the one in the above proof) shows
that the coset 〈f〉+ r is equal to r(α), where α is the coset 〈f〉+ x.

This means that

Every element of K = F [x]/〈f〉 can be uniquely expressed in the
form

c0 + c1α+ c2α
2 + · · ·+ cn−1α

n−1,

where c0, c1, . . . , cn−1 ∈ F .
The addition and multiplication in K are given by the usual
arithmetic rules, with the added condition that f(α) = 0.

The construction of C = R[x]/〈x2 + 1〉 is a familiar example: every complex
number is uniquely expressible as c0 + c1i, where i2 = −1.

For another example, let us construct a finite field of order 4.
We start with the field F =Z2, with elements 0 and 1. Consider the polyno-

mial x2 + x + 1 ∈ F [x]. This polynomial is irreducible, since the only possible
factorisation would be into two linear factors, which would imply that the
polynomial has a root in F ; but 02 + 0 + 1 �= 0 and 12 + 1 + 1 �= 0. Let
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Rings 103

K = F [x]/〈x2+x+1〉, and let α be the coset 〈x2+x+1〉+x, so that α2+α+1 = 0.
The field K has four elements: K = {0, 1, α, α + 1}. (This is our canonical rep-
resentation above.) Letting β = α+1 = α2 (noting that x = −x in the field K),
we obtain the following tables:

+ 0 1 α β

0 0 1 α β
1 1 0 β α
α α β 0 1
β β α 1 0

· 0 1 α β

0 0 0 0 0
1 0 1 α β
α 0 α β 1
β 0 β 1 α

If p is a prime, and n a positive integer, then a finite field of order pn can
be constructed in the same way if an irreducible polynomial of degree n over Zp

can be found. Galois showed that this is always possible:

Theorem 2.30 For any prime number p and any positive integer n, there is an
irreducible polynomial of degree n over Zp, and hence a finite field of order pn.

Exercise 2.31 Show that the polynomial x2 + 1 is irreducible over Z3, and hence
construct a field of order 9.

Exercise 2.32 Show that the polynomials x3+x+1 and x3+x2+1 are both irreducible
over Z2. Are the corresponding fields of order 8 isomorphic?

Exercise 2.33 Show that, if F is a field with q elements and f an irreducible
polynomial of degree n over F , then the field K = F [x]/〈f〉 has qn elements.

Exercise 2.34 Prove that any two fields of fractions F1 and F2 of an integral domain R
are isomorphic, where the isomorphism θ : F1 → F2 can be chosen so that its restriction
to the subring R of F1 is the identity map.

Exercise 2.35 A subset X of a ring R is called multiplicatively closed if a, b ∈ X
implies ab ∈ X.

(a) Prove that R is an integral domain if and only if the set of non-zero elements
of R is multiplicatively closed.

∗(b) Let R be a commutative ring with identity, and let X be a multiplicatively
closed subset of R containing 1 but not 0. Define an equivalence relation ∼ on R ×X
by the rule that (a, b) ∼ (c, d) if and only if ad = bc. Define operations of addition and
multiplication on the set F of equivalence classes of ∼ as in Section 2.14. Prove that F
is a ring containing R, in which every element of X has an inverse, and every element
of F can be written as ab−1, where a ∈ R and b ∈ X.

Appendix: Miscellany
We end with some miscellaneous topics.

2.17 Cage on zero. The American composer John Cage wrote the following.
What is he talking about? (Think about this before reading the following
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104 Rings

discussion.)

Curiously enough, the twelve-tone system has no zero in it. Given
a series: 3, 5, 2, 7, 10, 8, 11, 9, 1, 6, 4, 12 and the plan of obtaining
its inversion by numbers which when added to the corresponding
ones of the original series will give 12, one obtains 9, 7, 10, 5, 2,
4, 1, 3, 11, 6, 8 and 12. For in this system 12 plus 12 equals 12.
There is not enough of zero in it.

John Cage (1968).

I contend that Cage is confusing two different zeros, the zero element of the
real numbers and the zero element of the integers mod 12.

Real numbers Cage was very much attracted to the Zen concept of emptiness.
One of his most famous compositions, entitled 4′33′′, involves a pianist sitting
at the keyboard of a piano for 4 minutes and 33 seconds without striking a note;
the audience notices the background noise (since no emptiness is truly empty).
The real numbers represent sound intensity, so zero is the absence of sound.

Integers mod 12 Musical notation is based on the fact that notes an octave
apart (that is, when the frequency of one is double that of the other) have a very
similar subjective effect in melodic terms. So we regard such notes as ‘equivalent’.
More generally, two notes are equivalent if they are a whole number of octaves
apart.

In Western music, only a discrete set of notes is used. The octave is divided
into 12 intervals called semitones. Thus, the semitones appear (on a keyboard,
say), stretching to infinity in both directions like the integers. As above, two
semitones are equivalent if they differ by a whole number of octaves; that is,
if (as integers) they are congruent mod 12. So the musical scale, for thematic
purposes, has the structure of the integers mod 12. Various musical operations
fit into this framework. For example, transposition just involves adding a fixed
constant to each note. Inversion involves replacing each equivalence class by its
negative. (This is what Cage describes.)

Two kinds of zeros The equivalence classes referred to are the congruence
classes mod 12, that is, the cosets of 12Z in Z. We can make any choice of coset
representatives we like. Mathematicians usually use 0, 1, 2, . . . , 11. Musicians use
12 instead of 0 as the representative of the class 12Z, so that their semitones are
labelled 1, 2, 3, . . . , 12.

Now Cage’s arithmetic checks, since −3 = 9, −5 = 7, and so on, in Z12 (the
integers mod 12). The mathematician says −0 = 0, the musician −12 = 12; it is
exactly the same, just involving a different choice of coset representative.

So, contrary to what Cage says, there is a zero in the twelve-tone scale (but
musicians call it 12); and it has nothing to do with the real number zero, the
zero of intensity or absence of sound when the pianist is not striking the keys.
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Footnote The title of Cage’s piece mentioned above itself blurs the categories
between different kinds of numbers. Four minutes and thirty-three seconds make
273 seconds; and −273 is the temperature of absolute zero in the Celsius scale.
If he had used the Fahrenheit scale, Cage would presumably have titled his piece
7′39′′; but this duration may have taxed the patience of the audience too far!

2.18 Solution to Exercise 2.10. Exercise 2.10 asks whether it is possible
to have a ring whose elements are the integers, with (a) the same addition as Z

but different multiplication, or (b) the same multiplication but different addition.
Part (a) is easy if you remember the definition of a zero ring from Section 2.2:

if we are given the operation of addition satisfying axioms (A0)–(A4), and we
define multiplication by ab = 0 for all a, b, we obtain a ring. (For a more
challenging question, try to describe all the possible definitions of multiplication
which would give a ring.)

Part (b) is much harder. If you tried this question, you probably attempted
to write down an explicit rule for addition which would make R into a ring.
I do not know how to do that. Instead, I will give here a solution which is
non-constructive, and is an illustration of the concept of factorisation, which we
discussed in Sections 2.10–2.13.

Let R be a ring in which the set of elements is Z and the multiplication is the
same as that in Z. We start by making a list of properties of R. Any property
which is defined purely in terms of multiplication, which holds in Z, will hold in
R. Thus, we have the following:

(a) R is commutative.
(b) R has an identity element 1.
(c) R has no divisors of zero. (Thus, R is an integral domain.)
(d) R has just two units, 1 and z, where z2 = 1. (In fact, in Z, we have z = −1,

but −1 depends on the addition, so we cannot assert that z = −1 here.
Confusingly, z is the integer whose name is −1, but we do not know that
it is the additive inverse of 1.)

(e) R has infinitely many irreducibles (by the theorem of Euclid).
(f) R is a unique factorisation domain.

In fact, these properties determine the multiplication in R completely. For,
if they hold, then any non-zero element can be uniquely written as upa1

k1
· · · par

kr
,

where u = 1 or z, p1, p2, . . . are the irreducibles (one from each associate class),
and a1, . . . , ar are positive integers. Now the rule for multiplying these elements
is clear.

This means that, if we can find a ring S different from Z having properties
(a)–(f), then S will have the same multiplication as Z, and so R = S is a solution
to the problem.

The simplest example of such a ring is the polynomial ring F [x], where
F = Z3 is the field of integers mod 3. This is a UFD (since it is a Euclidean
domain); its units are the two non-zero constants; and Euclid’s proof holds virtu-
ally unchanged to show that there are infinitely many irreducibles. (If there were
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106 Rings

only finitely many irreducibles, say f1, . . . , fr, then the polynomial f1 · · · fr + 1
would not be irreducible, but would not be divisible by any irreducible, a
contradiction.)

For example, we might let the irreducible polynomials x, x+1, x− 1, x2 +1,
. . . correspond to the prime numbers 2, 3, 5, 7, . . . . Then, using ⊕ for the
new addition, we have 1 ⊕ 1 = −1, 3 ⊕ 5 = −2, 4 ⊕ 1 = 7, 7 ⊕ 1 = 15,
and so on.

2.19 Ideals in matrix rings. A commutative ring R with identity, whose
only ideals are the trivial ones (namely, {0} and R), is necessarily a field (see
Proposition 2.24). This is false if we do not assume commutativity. The ring
Mn(F ) of all n × n matrices over the field F has only the trivial ideals, as we
shall see; but it is not a division ring for n > 1, since there are non-zero singular
matrices.

Theorem 2.31 Let R be a commutative ring with identity, and n a positive
integer.

(a) If S is an ideal of R, then Mn(S) is an ideal of Mn(R).
(b) Every ideal of Mn(R) is of this form.

Proof (a) If S is an ideal of R, then it is a ring, and so Mn(S) is a ring, so (by
definition) a subring of Mn(R). Now take A = (aij) ∈ Mn(S), and X = (xij) ∈
Mn(R). The (i, j) entry of AX is

n∑
k=1

aikxkj .

Now aikxkj ∈ S, since aik ∈ S and S is an ideal. Summing over k then gives an
element of S. So AX ∈Mn(S). Similarly XA ∈Mn(S). So Mn(S) is an ideal of
Mn(R).

(b) Suppose that T is an ideal of Mn(R). Let S be the set of elements of R
which occur as entries in matrices in T . We show that S is an ideal of R and
that T =Mn(S).

Let Eij denote the matrix with 1 in row i and column j, and 0 in all other
positions. Also, let S′ be the set of all elements x ∈ R such that xE11 ∈ T . (Here
xE11 is the matrix with x in the top left-hand corner and all other entries zero.)
Step 1 S′ = S.

For clearly S′ ⊆ S. Let x ∈ S; then there is a matrix A = (aij) ∈ T such that
apq = x. Now it is easily checked that

E1pAEq1 = apqE11 = xE11.

Since T is an ideal, xE11 ∈ T , so x ∈ S′.
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Rings 107

Step 2 S is an ideal of R.
Take x, y ∈ S and r ∈ R. Then xE11, yE11 ∈ T . Then, for any r ∈ R, we

have

(x+ y)E11 = xE11 + yE11 ∈ T,
(rx)E11 = (rE11)(xE11) ∈ T,
(xr)E11 = (xE11)(rE11) ∈ T,

since T is an ideal of Mn(R). So x+ y, rx, xr ∈ S, and S is an ideal of R.
Step 3 T =Mn(S).

By definition, T ⊆Mn(S). Suppose that A = (aij) ∈Mn(S). Then

A =
n∑

i,j=1

Ei1(aijE11)E1j ∈ T,

since aijE11 ∈ T by Step 1 and T is an ideal.

Thus, for example, the ring of 2× 2 matrices over the ring of integers mod 4
has just three ideals:

• the zero ideal;
• the ideal consisting of matrices with every entry 0 or 2;
• the whole ring.

A ring R is defined to be simple if the only ideals in R are {0} and R.
Thus, any field (or, indeed, any division ring) is simple. From Theorem 2.31 we
immediately conclude:

Corollary 2.32 Let F be a field, and n a positive integer. Then Mn(F ) is a
simple ring.

Exercise 2.36 Recall the definition of the direct product R× S of two rings R and
S: the elements of R × S are all ordered pairs (r, s), where r ∈ R and s ∈ S; and the
operations are componentwise, that is,

(r1, s1) + (r2, s2) = (r1 + r2, s1 + s2), (r1, s1) · (r2, s2) = (r1r2, s1s2).

Let R′ = {(r, 0) : r ∈ R} and S′ = {(0, s) : s ∈ S}. Prove that R′ and S′ are ideals of
R× S isomorphic to R and S respectively.

Now suppose that T is a ring which contains ideals R and S having the property
that every element of T can be written uniquely in the form r + s, where r ∈ R and
s ∈ S. Prove the following assertions:

(a) R+ S = T and R ∩ S = {0}.
(b) If r ∈ R and s ∈ S, then r and s commute (that is, rs = sr).
(c) The map θ from R× S to T given by (r, s)θ = r + s is an isomorphism.
(d) T is isomorphic to R× S.
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108 Rings

Exercise 2.37 Let R be a ring, and a an element of R. Remember that 〈a〉 means the
ideal generated by a, which by definition is the smallest ideal of R containing a.

(a) Prove that 〈a〉 is the set of all elements of R of the form

na+ sa+ at+
m∑
i=1

siati,

where m and n are integers, m ≥ 0, and s, t, si, ti are elements of R (and na has
its usual meaning).

(b) Suppose that R has an identity. Show that the terms na, sa, and at can
be dropped from the expression above.

(c) The element a is said to be central if it commutes with every element
of R. Show that, if R has an identity and a is central, then

〈a〉 = aR = {ar : r ∈ R}.

(d) Give a description of 〈a〉 in the case where a is central but R does not
necessarily have an identity.

Exercise 2.38 Let F be a field and n a positive integer. Let R be the ring Mn(F )
of n × n matrices over F . Let a = E11 be the matrix with entry 1 in the first row
and column, and all other entries zero. By Theorem 2.31, we know that 〈a〉 = R. So,
by part (b) of the preceding exercise, every element of R can be written in the form∑m

i=1 siati, for some elements si, ti ∈ R. Show that there are elements of R which
cannot be expressed as the sum of fewer than n terms of the form siati, for si, ti ∈ R.

Exercise 2.39 An element e of a ring is said to be an idempotent if e2 = e.

(a) Let e be an idempotent in a ring with identity. Show that 1 − e is also
an idempotent.

(b) Let R and S be rings with identity. Show that the elements (1, 0) and
(0, 1) are central idempotents of the direct product R × S, whose sum is the
identity of R× S.

(c) Conversely, suppose that T is a ring with identity and e is a central
idempotent of T with e �= 0, 1. Prove that T ∼= R × S, where R = eT and
S = (1− e)T .

Exercise 2.40 An element r of a ring R is said to be nilpotent if rn = 0 for some
positive integer n.

(a) Prove that a non-zero nilpotent element is a zero divisor. Is the converse
true?

(b) Prove that, in a commutative ring, the set of nilpotent elements is an
ideal.
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Rings 109

(c) Let n be a positive integer. Find all nilpotent elements of the ring Zn of
integers mod n. (Since, by the previous part they form an ideal, they must consist
of all multiples of n∗ for some integer n∗ dividing n. Your job is to calculate n∗

in terms of n.)

Exercise 2.41 Let R be a ring with identity. Prove that, if the element r ∈ R is
nilpotent, then 1 + r is a unit.

Exercise 2.42 Prove that, in a matrix ring Mn(R), any strictly upper triangular
matrix is nilpotent.
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