


Welcome!

Thank you for joining us! As you explore this book, you will find a number of active
learning components that help you learn the material at your own pace.

1. CODE CHALLENGES ask you to implement the algorithms that you will en-
counter (in any programming language you like). These code challenges are
hosted in the “Bioinformatics Textbook Track” location on Rosalind (http://
rosalind.info), a website that will automatically test your implementations.

2. CHARGING STATIONS provide additional insights on implementing the algo-
rithms you encounter. However, we suggest trying to solve a Code Challenge
before you visit a Charging Station.

3. EXERCISE BREAKS offer “just in time” assessments testing your understanding
of a topic before moving to the next one.

4. STOP and Think questions invite you to slow down and contemplate the current
material before continuing to the next topic.

5. DETOURS provide extra content that didn’t quite fit in the main text. DETOURDETOUR

6. FINAL CHALLENGES ask you to apply what you have learned to real experi-
mental datasets.

This textbook powers our popular online courses on Coursera. We encourage you
to sign up for a session and learn this material while interacting with thousands of
other talented students from around the world. You can also find lecture videos and
PowerPoint slides at the textbook website, http://bioinformaticsalgorithms.org.
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A Journey of a Thousand Miles. . .

Genome replication is one of the most important tasks carried out in the cell. Before
a cell can divide, it must first replicate its genome so that each of the two daughter
cells inherits its own copy. In 1953, James Watson and Francis Crick completed their
landmark paper on the DNA double helix with a now-famous phrase:

It has not escaped our notice that the specific pairing we have postulated immediately
suggests a possible copying mechanism for the genetic material.

They conjectured that the two strands of the parent DNA molecule unwind during
replication, and then each parent strand acts as a template for the synthesis of a new
strand. As a result, the replication process begins with a pair of complementary strands
of DNA and ends with two pairs of complementary strands, as shown in Figure 1.1.

FIGURE 1.1 A naive view of DNA replication. Nucleotides adenine (A) and thymine (T)
are complements of each other, as are cytosine (C) and guanine (G). Complementary
nucleotides bind to each other in DNA.

Although Figure 1.1 models DNA replication on a simple level, the details of replica-
tion turned out to be much more intricate than Watson and Crick imagined; as we will
see, an astounding amount of molecular logistics is required to ensure DNA replication.

At first glance, a computer scientist might not imagine that these details have any
computational relevance. To mimic the process in Figure 1.1 algorithmically, we only
need to take a string representing the genome and return a copy of it! Yet if we take
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the time to review the underlying biological process, we will be rewarded with new
algorithmic insights into analyzing replication.

Replication begins in a genomic region called the replication origin (denoted oriC)
and is performed by molecular copy machines called DNA polymerases. Locating
oriC presents an important task not only for understanding how cells replicate but
also for various biomedical problems. For example, some gene therapy methods use
genetically engineered mini-genomes, which are called viral vectors because they are
able to penetrate cell walls (just like real viruses). Viral vectors carrying artificial genes
have been used in agriculture to engineer frost-resistant tomatoes and pesticide-resistant
corn. In 1990, gene therapy was first successfully performed on humans when it saved
the life of a four-year-old girl suffering from Severe Combined Immunodeficiency
Disorder; the girl had been so vulnerable to infections that she was forced to live in a
sterile environment.

The idea of gene therapy is to intentionally infect a patient who lacks a crucial
gene with a viral vector containing an artificial gene that encodes a therapeutic protein.
Once inside the cell, the vector replicates and eventually produces many copies of the
therapeutic protein, which in turn treats the patient’s disease. To ensure that the vector
actually replicates inside the cell, biologists must know where oriC is in the vector’s
genome and ensure that the genetic manipulations that they perform do not affect it.

In the following problem, we assume that a genome has a single oriC and is rep-
resented as a DNA string, or a string of nucleotides from the four-letter alphabet
{A,C,G,T}.

Finding Origin of Replication Problem:

Input: A DNA string Genome.
Output: The location of oriC in Genome.

STOP and Think: Does this biological problem represent a clearly stated compu-
tational problem?

Although the Finding Origin of Replication Problem asks a legitimate biological ques-
tion, it does not present a well-defined computational problem. Indeed, biologists
would immediately plan an experiment to locate oriC: for example, they might delete
various short segments from the genome in an effort to find a segment whose deletion
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stops replication. Computer scientists, on the other hand, would shake their heads and
demand more information before they can even start thinking about the problem.

Why should biologists care what computer scientists think? Computational meth-
ods are now the only realistic way to answer many questions in modern biology. First,
these methods are much faster than experimental approaches; second, the results of
many experiments cannot be interpreted without computational analysis. In particular,
existing experimental approaches to oriC prediction are rather time consuming. As
a result, oriC has only been experimentally located in a handful of species. Thus, we
would like to design a computational approach to find oriC so that biologists are free to
spend their time and money on other tasks.

Hidden Messages in the Replication Origin

DnaA boxes

In the rest of this chapter, we will focus on the relatively easy case of finding oriC in
bacterial genomes, most of which consist of a single circular chromosome. Research has
shown that the region of the bacterial genome encoding oriC is typically a few hundred
nucleotides long. Our plan is to begin with a bacterium in which oriC is known, and
then determine what makes this genomic region special in order to design a computa-
tional approach for finding oriC in other bacteria. Our example is Vibrio cholerae, the
bacterium that causes cholera; here is the nucleotide sequence appearing in its oriC:

atcaatgatcaacgtaagcttctaagcatgatcaaggtgctcacacagtttatccacaac
ctgagtggatgacatcaagataggtcgttgtatctccttcctctcgtactctcatgacca
cggaaagatgatcaagagaggatgatttcttggccatatcgcaatgaatacttgtgactt
gtgcttccaattgacatcttcagcgccatattgcgctggccaaggtgacggagcgggatt
acgaaagcatgatcatggctgttgttctgtttatcttgttttgactgagacttgttagga
tagacggtttttcatcactgactagccaaagccttactctgcctgacatcgaccgtaaat
tgataatgaatttacatgcttccgcgacgatttacctcttgatcatcgatccgattgaag
atcttcaattgttaattctcttgcctcgactcatagccatgatgagctcttgatcatgtt
tccttaaccctctattttttacggaagaatgatcaagctgctgctcttgatcatcgtttc

How does the bacterial cell know to begin replication exactly in this short region
within the much larger Vibrio cholerae chromosome, which consists of 1,108,250 nu-
cleotides? There must be some “hidden message” in the oriC region ordering the cell to
begin replication here. Indeed, we know that the initiation of replication is mediated
by DnaA, a protein that binds to a short segment within the oriC known as a DnaA

box. You can think of the DnaA box as a message within the DNA sequence telling the
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DnaA protein: “bind here!” The question is how to find this hidden message without
knowing what it looks like in advance — can you find it? In other words, can you
find something that stands out in oriC? This discussion motivates the following problem.

Hidden Message Problem:
Find a “hidden message” in the replication origin.

Input: A string Text (representing the replication origin of a genome).
Output: A hidden message in Text.

STOP and Think: Does this problem represent a clearly stated computational
problem?

Hidden messages in “The Gold-Bug”

Although the Hidden Message Problem poses a legitimate intuitive question, it again
makes absolutely no sense to a computer scientist because the notion of a “hidden
message” is not precisely defined. The oriC region of Vibrio cholerae is currently just as
puzzling as the parchment discovered by William Legrand in Edgar Allan Poe’s story
“The Gold-Bug”. Written on the parchment was the following:

53++!305))6*;4826)4+.)4+);806*;48!8‘60))85;1+(;:+*8
!83(88)5*!;46(;88*96*?;8)*+(;485);5*!2:*+(;4956*2(5

*-4)8‘8*;4069285);)6!8)4++;1(+9;48081;8:8+1;48!85:4
)485!528806*81(+9;48;(88;4(+?34;48)4+;161;:188;+?;

Upon seeing the parchment, the narrator remarks, “Were all the jewels of Golconda
awaiting me upon my solution of this enigma, I am quite sure that I should be unable
to earn them”. Legrand retorts, “It may well be doubted whether human ingenuity can
construct an enigma of the kind which human ingenuity may not, by proper application,
resolve”. He reasons that the three consecutive symbols ";48" appear with surprising
frequency on the parchment:

53++!305))6*;4826)4+.)4+);806*;48!8‘60))85;1+(;:+*8
!83(88)5*!;46(;88*96*?;8)*+(;485);5*!2:*+(;4956*2(5
*-4)8‘8*;4069285);)6!8)4++;1(+9;48081;8:8+1;48!85;4
)485!528806*81(+9;48;(88;4(+?34;48)4+;161;:188;+?;
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Legrand had already deduced that the pirates spoke English; he therefore assumed
that the high frequency of ";48" implied that it encodes the most frequent English
word, "THE". Substituting each symbol, Legrand had a slightly easier text to decipher,
which would eventually lead him to the buried treasure. Can you decode this message
too?

53++!305))6*THE26)H+.)H+)TE06*THE!E‘60))E5T1+(T:+*E
!E3(EE)5*!TH6(TEE*96*?TE)*+(THE5)T5*!2:*+(TH956*2(5

*-H)E‘E*TH0692E5)T)6!E)H++T1(+9THE0E1TE:E+1THE!E5TH
)HE5!52EE06*E1(+9THET(EETH(+?3HTHE)H+T161T:1EET+?T

Counting words

Operating under the assumption that DNA is a language of its own, let’s borrow
Legrand’s method and see if we can find any surprisingly frequent “words” within
the oriC of Vibrio cholerae. We have added reason to look for frequent words in the
oriC because for various biological processes, certain nucleotide strings often appear
surprisingly often in small regions of the genome. For example, ACTAT is a surprisingly
frequent substring of

ACAACTATGCATACTATCGGGAACTATCCT.

We use the term k-mer to refer to a string of length k and define COUNT(Text, Pattern)
as the number of times that a k-mer Pattern appears as a substring of Text. Following
the above example,

COUNT(ACAACTATGCATACTATCGGGAACTATCCT, ACTAT) = 3.

Note that COUNT(CGATATATCCATAG, ATA) is equal to 3 (not 2) since we should ac-
count for overlapping occurrences of Pattern in Text.

To compute COUNT(Text, Pattern), our plan is to “slide a window” down Text, check-
ing whether each k-mer substring of Text matches Pattern. We will therefore refer to
the k-mer starting at position i of Text as Text(i, k). Throughout this book, we will often
use 0-based indexing, meaning that we count starting at 0 instead of 1. In this case,
Text begins at position 0 and ends at position |Text|� 1 (|Text| denotes the number of
symbols in Text). For example, if Text = GACCATACTG, then Text(4, 3) = ATA. Note that
the last k-mer of Text begins at position |Text|� k, e.g., the last 3-mer of GACCATACTG
starts at position 10� 3 = 7. This discussion results in the following pseudocode for
computing COUNT(Text, Pattern).
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PATTERNCOUNT(Text, Pattern)
count 0
for i 0 to |Text|� |Pattern|

if Text(i, |Pattern|) = Pattern
count count + 1

return count

1A

The Frequent Words Problem

We say that Pattern is a most frequent k-mer in Text if it maximizes COUNT(Text, Pattern)
among all k-mers. You can see that ACTAT is a most frequent 5-mer for Text =

ACAACTATGCATACTATCGGGAACTATCCT, and ATA is a most frequent 3-mer for Text =
CGATATATCCATAG.

STOP and Think: Can a string have multiple most frequent k-mers?

We now have a rigorously defined computational problem.

Frequent Words Problem:
Find the most frequent k-mers in a string.

Input: A string Text and an integer k.
Output: All most frequent k-mers in Text.

1B

A straightforward algorithm for finding the most frequent k-mers in a string Text checks
all k-mers appearing in this string (there are |Text|� k + 1 such k-mers) and then com-
putes how many times each k-mer appears in Text. To implement this algorithm, called
FREQUENTWORDS, we will need to generate an array COUNT, where COUNT(i) stores
COUNT(Text, Pattern) for Pattern = Text(i, k) (see Figure 1.2).

Text A C T G A C T C C C A C C C C
COUNT 2 1 1 1 2 1 1 3 1 1 1 3 3

FIGURE 1.2 The array COUNT for Text = ACTGACTCCCACCCC and k = 3. For exam-
ple, COUNT(0) = COUNT(4) = 2 because ACT (shown in boldface) appears twice in
Text at positions 0 and 4.
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FREQUENTWORDS(Text, k)
FrequentPatterns an empty set
for i 0 to |Text|� k

Pattern the k-mer Text(i, k)
COUNT(i) PATTERNCOUNT(Text, Pattern)

maxCount maximum value in array COUNT

for i 0 to |Text|� k
if COUNT(i) = maxCount

add Text(i, k) to FrequentPatterns

remove duplicates from FrequentPatterns
return FrequentPatterns

STOP and Think: How fast is FREQUENTWORDS?

Although FREQUENTWORDS finds most frequent k-mers, it is not very efficient. Each
call to PATTERNCOUNT(Text, Pattern) checks whether the k-mer Pattern appears in posi-
tion 0 of Text, position 1 of Text, and so on. Since each k-mer requires |Text|� k + 1 such
checks, each one requiring as many as k comparisons, the overall number of steps of
PATTERNCOUNT(Text, Pattern) is (|Text|� k + 1) · k. Furthermore, FREQUENTWORDS

must call PATTERNCOUNT |Text|� k + 1 times (once for each k-mer of Text), so that its
overall number of steps is (|Text|� k + 1) · (|Text|� k + 1) · k. To simplify the matter,
computer scientists often say that the runtime of FREQUENTWORDS has an upper
bound of |Text|2 · k steps and refer to the complexity of this algorithm as O�|Text|2 · k

�

(see DETOUR: Big-O Notation). PAGE 52

CHARGING STATION (The Frequency Array): If |Text| and k are small, as
is the case when looking for DnaA boxes in the typical bacterial oriC, then an
algorithm with running time of O�|Text|2 · k

�
is perfectly acceptable. But once

we find some new biological application requiring us to solve the Frequent
Words Problem for a very long Text, we will quickly run into trouble. Check
out this Charging Station to learn about solving the Frequent Words Problem
using a frequency array, a data structure that will also help us solve new coding
challenges later in the chapter.

PAGE
39
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Frequent words in Vibrio cholerae

Figure 1.3 reveals the most frequent k-mers in the oriC region from Vibrio cholerae.

k 3 4 5 6 7 8 9
count 25 12 8 8 5 4 3
k-mers tga atga gatca tgatca atgatca atgatcaa atgatcaag

tgatc cttgatcat
tcttgatca
ctcttgatc

FIGURE 1.3 The most frequent k-mers in the oriC region of Vibrio cholerae for k from
3 to 9, along with the number of times that each k-mer occurs.

STOP and Think: Do any of the counts in Figure 1.3 seem surprisingly large?

For example, the 9-mer ATGATCAAG appears three times in the oriC region of Vibrio
cholerae — is it surprising?

atcaatgatcaacgtaagcttctaagcATGATCAAGgtgctcacacagtttatccacaac
ctgagtggatgacatcaagataggtcgttgtatctccttcctctcgtactctcatgacca
cggaaagATGATCAAGagaggatgatttcttggccatatcgcaatgaatacttgtgactt
gtgcttccaattgacatcttcagcgccatattgcgctggccaaggtgacggagcgggatt
acgaaagcatgatcatggctgttgttctgtttatcttgttttgactgagacttgttagga
tagacggtttttcatcactgactagccaaagccttactctgcctgacatcgaccgtaaat
tgataatgaatttacatgcttccgcgacgatttacctcttgatcatcgatccgattgaag
atcttcaattgttaattctcttgcctcgactcatagccatgatgagctcttgatcatgtt
tccttaaccctctattttttacggaagaATGATCAAGctgctgctcttgatcatcgtttc

We highlight a most frequent 9-mer instead of using some other value of k because
experiments have revealed that bacterial DnaA boxes are usually nine nucleotides long.
The probability that there exists a 9-mer appearing three or more times in a randomly
generated DNA string of length 500 is approximately 1/1300 (see DETOUR: Probabili-PAGE 52
ties of Patterns in a String). In fact, there are four different 9-mers repeated three or
more times in this region: ATGATCAAG, CTTGATCAT, TCTTGATCA, and CTCTTGATC.

The low likelihood of witnessing even one repeated 9-mer in the oriC region of Vibrio
cholerae leads us to the working hypothesis that one of these four 9-mers may represent
a potential DnaA box that, when appearing multiple times in a short region, jump-starts
replication. But which one?

10
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STOP and Think: Is any one of the four most frequent 9-mers in the oriC of Vibrio
cholerae “more surprising” than the others?

Some Hidden Messages are More Surprising than Others

Recall that nucleotides A and T are complements of each other, as are C and G. Having
one strand of DNA and a supply of “free floating” nucleotides as shown in Figure 1.1,
one can imagine the synthesis of a complementary strand on a template strand. This
model of replication was confirmed by Meselson and Stahl in 1958 (see DETOUR: PAGE 57
The Most Beautiful Experiment in Biology). Figure 1.4 shows a template strand
AGTCGCATAGT and its complementary strand ACTATGCGACT.

At this point, you may think that we have made a mistake, since the comple-
mentary strand in Figure 1.4 reads out TCAGCGTATCA from left to right rather than
ACTATGCGACT. We have not: each DNA strand has a direction, and the complementary
strand runs in the opposite direction to the template strand, as shown by the arrows in
Figure 1.4. Each strand is read in the 5’ ! 3’ direction (see DETOUR: Directionality PAGE 59
of DNA Strands to learn why biologists refer to the beginning and end of a strand of
DNA using the terms 5’ and 3’).

T C A G C G T A T C A 

A G T C G C A T A G T 

3  

3  

5  

5  

FIGURE 1.4 Complementary strands run in opposite directions.

Given a nucleotide p, we denote its complementary nucleotide as p. The reverse
complement of a string Pattern = p1 · · · pn is the string Pattern = pn · · · p1 formed by
taking the complement of each nucleotide in Pattern, then reversing the resulting string.
We will need the solution to the following problem throughout this chapter.

11
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Reverse Complement Problem:
Find the reverse complement of a DNA string.

Input: A DNA string Pattern.
Output: Pattern, the reverse complement of Pattern.

1C

STOP and Think: Look again at the four most frequent 9-mers in the oriC region
of Vibrio cholerae from Figure 1.3. Now do you notice anything surprising?

Interestingly, among the four most frequent 9-mers in the oriC region of Vibrio cholerae,
ATGATCAAG and CTTGATCAT are reverse complements of each other, resulting in the
following six occurrences of these strings.

atcaatgatcaacgtaagcttctaagcATGATCAAGgtgctcacacagtttatccacaac
ctgagtggatgacatcaagataggtcgttgtatctccttcctctcgtactctcatgacca
cggaaagATGATCAAGagaggatgatttcttggccatatcgcaatgaatacttgtgactt
gtgcttccaattgacatcttcagcgccatattgcgctggccaaggtgacggagcgggatt
acgaaagcatgatcatggctgttgttctgtttatcttgttttgactgagacttgttagga
tagacggtttttcatcactgactagccaaagccttactctgcctgacatcgaccgtaaat
tgataatgaatttacatgcttccgcgacgatttacctCTTGATCATcgatccgattgaag
atcttcaattgttaattctcttgcctcgactcatagccatgatgagctCTTGATCATgtt
tccttaaccctctattttttacggaagaATGATCAAGctgctgctCTTGATCATcgtttc

Finding a 9-mer that appears six times (either as itself or as its reverse complement) in
a DNA string of length 500 is far more surprising than finding a 9-mer that appears three
times (as itself). This observation leads us to the working hypothesis that ATGATCAAG
and its reverse complement CTTGATCAT indeed represent DnaA boxes in Vibrio cholerae.
This computational conclusion makes sense biologically because the DnaA protein that
binds to DnaA boxes and initiates replication does not care which of the two strands it
binds to. Thus, for our purposes, both ATGATCAAG and CTTGATCAT represent DnaA
boxes.

However, before concluding that we have found the DnaA box of Vibrio cholerae,
the careful bioinformatician should check if there are other short regions in the Vibrio
cholerae genome exhibiting multiple occurrences of ATGATCAAG (or CTTGATCAT). Af-
ter all, maybe these strings occur as repeats throughout the entire Vibrio cholerae genome,
rather than just in the oriC region. To this end, we need to solve the following problem.

12
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Pattern Matching Problem:
Find all occurrences of a pattern in a string.

Input: Strings Pattern and Genome.
Output: All starting positions in Genome where Pattern appears as a sub-
string.

1D

After solving the Pattern Matching Problem, we discover that ATGATCAAG appears 17
times in the following positions of the Vibrio cholerae genome:

116556, 149355, 151913, 152013, 152394, 186189, 194276, 200076, 224527,
307692, 479770, 610980, 653338, 679985, 768828, 878903, 985368

With the exception of the three occurrences of ATGATCAAG in oriC at starting positions
151913, 152013, and 152394, no other instances of ATGATCAAG form clumps, i.e., ap-
pear close to each other in a small region of the genome. You may check that the same
conclusion is reached when searching for CTTGATCAT. We now have strong statistical
evidence that ATGATCAAG/CTTGATCAT may represent the hidden message to DnaA
to start replication.

STOP and Think: Can we conclude that ATGATCAAG/CTTGATCAT also repre-
sents a DnaA box in other bacterial genomes?

An Explosion of Hidden Messages

Looking for hidden messages in multiple genomes

We should not jump to the conclusion that ATGATCAAG/CTTGATCAT is a hidden
message for all bacterial genomes without first checking whether it even appears
in known oriC regions from other bacteria. After all, maybe the clumping effect of
ATGATCAAG/CTTGATCAT in the oriC region of Vibrio cholerae is simply a statistical
fluke that has nothing to do with replication. Or maybe different bacteria have different
DnaA boxes . . .

Let’s check the proposed oriC region of Thermotoga petrophila, a bacterium that thrives
in extremely hot environments; its name derives from its discovery in the water beneath
oil reservoirs, where temperatures can exceed 80� Celsius.
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aactctatacctcctttttgtcgaatttgtgtgatttatagagaaaatcttattaactga
aactaaaatggtaggtttggtggtaggttttgtgtacattttgtagtatctgatttttaa
ttacataccgtatattgtattaaattgacgaacaattgcatggaattgaatatatgcaaa
acaaacctaccaccaaactctgtattgaccattttaggacaacttcagggtggtaggttt
ctgaagctctcatcaatagactattttagtctttacaaacaatattaccgttcagattca
agattctacaacgctgttttaatgggcgttgcagaaaacttaccacctaaaatccagtat
ccaagccgatttcagagaaacctaccacttacctaccacttacctaccacccgggtggta
agttgcagacattattaaaaacctcatcagaagcttgttcaaaaatttcaatactcgaaa
cctaccacctgcgtcccctattatttactactactaataatagcagtataattgatctga

This region does not contain a single occurrence of ATGATCAAG or CTTGATCAT ! Thus,
different bacteria may use different DnaA boxes as “hidden messages” to the DnaA
protein.

Application of the Frequent Words Problem to the oriC region above reveals that the
following six 9-mers appear in this region three or more times:

AACCTACCA AAACCTACC ACCTACCAC

CCTACCACC GGTAGGTTT TGGTAGGTT

Something peculiar must be happening because it is extremely unlikely that six different
9-mers will occur so frequently within a short region in a random string. We will cheat
a little and consult with Ori-Finder, a software tool for finding replication origins in
DNA sequences. This software chooses CCTACCACC (along with its reverse comple-
ment GGTGGTAGG) as a working hypothesis for the DnaA box in Thermotoga petrophila.
Together, these two complementary 9-mers appear five times in the replication origin:

aactctatacctcctttttgtcgaatttgtgtgatttatagagaaaatcttattaactga
aactaaaatggtaggtttGGTGGTAGGttttgtgtacattttgtagtatctgatttttaa
ttacataccgtatattgtattaaattgacgaacaattgcatggaattgaatatatgcaaa
acaaaCCTACCACCaaactctgtattgaccattttaggacaacttcagGGTGGTAGGttt
ctgaagctctcatcaatagactattttagtctttacaaacaatattaccgttcagattca
agattctacaacgctgttttaatgggcgttgcagaaaacttaccacctaaaatccagtat
ccaagccgatttcagagaaacctaccacttacctaccacttaCCTACCACCcgggtggta
agttgcagacattattaaaaacctcatcagaagcttgttcaaaaatttcaatactcgaaa
CCTACCACCtgcgtcccctattatttactactactaataatagcagtataattgatctga

The Clump Finding Problem

Now imagine that you are trying to find oriC in a newly sequenced bacterial genome.
Searching for “clumps” of ATGATCAAG/CTTGATCAT or CCTACCACC/GGTGGTAGG is
unlikely to help, since this new genome may use a completely different hidden message!
Before we lose all hope, let’s change our computational focus: instead of finding clumps
of a specific k-mer, let’s try to find every k-mer that forms a clump in the genome.
Hopefully, the locations of these clumps will shed light on the location of oriC.
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Our plan is to slide a window of fixed length L along the genome, looking for a
region where a k-mer appears several times in short succession. The parameter value
L = 500 reflects the typical length of oriC in bacterial genomes.

We defined a k-mer as a “clump” if it appears many times within a short interval of
the genome. More formally, given integers L and t, a k-mer Pattern forms an (L, t)-clump
inside a (longer) string Genome if there is an interval of Genome of length L in which this
k-mer appears at least t times. (This definition assumes that the k-mer completely fits
within the interval.) For example, TGCA forms a (25, 3)-clump in the following Genome:

gatcagcataagggtccCTGCAATGCATGACAAGCCTGCAGTtgttttac

From our previous examples of oriC regions, ATGATCAAG forms a (500, 3)-clump in
the Vibrio cholerae genome, and CCTACCACC forms a (500, 3)-clump in the Thermotoga
petrophila genome. We are now ready to formulate the following problem.

Clump Finding Problem:
Find patterns forming clumps in a string.

Input: A string Genome, and integers k, L, and t.
Output: All distinct k-mers forming (L, t)-clumps in Genome.

1E

CHARGING STATION (Solving the Clump Finding Problem): You can solve
the Clump Finding Problem by simply applying your algorithm for the Frequent
Words Problem to each window of length L in Genome. However, if your algorithm
for the Frequent Words Problem is not very efficient, then such an approach may
be impractical. For example, recall that FREQUENTWORDS has O�

L2 · k
�

running
time. Applying this algorithm to each window of length L in Genome will result
in an algorithm with O�

L2 · k · |Genome|� running time. Moreover, even if we
use a faster algorithm for the Frequent Words Problem (like the one described
when we introduce a frequency array on page 39), the running time remains high
when we try to analyze a bacterial — let alone human — genome. Check out this
Charging Station to learn about a more efficient approach for solving the Clump
Finding Problem.

PAGE
44

Let’s look for clumps in the Escherichia coli (E. coli) genome, the workhorse of bacterial
genomics. We find hundreds of different 9-mers forming (500, 3)-clumps in the E. coli
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genome, and it is absolutely unclear which of these 9-mers might represent a DnaA box
in the bacterium’s oriC region.

STOP and Think: Should we give up? If not, what would you do now?

At this point, an unseasoned researcher might give up, since it appears that we do not
have enough information to locate oriC in E. coli. But a fearless veteran bioinformatician
would try to learn more about the details of replication in the hope that they provide
new algorithmic insights into finding oriC.

The Simplest Way to Replicate DNA

We are now ready to discuss the replication process in more detail. As illustrated in
Figure 1.5 (top), the two complementary DNA strands running in opposite directions
around a circular chromosome unravel, starting at oriC. As the strands unwind, they
create two replication forks, which expand in both directions around the chromosome
until the strands completely separate at the replication terminus (denoted terC). The
replication terminus is located roughly opposite to oriC in the chromosome.

An important thing to know about replication is that a DNA polymerase does not
wait for the two parent strands to completely separate before initiating replication;
instead, it starts copying while the strands are unraveling. Thus, just four DNA poly-
merases, each responsible for one half-strand, can all start at oriC and replicate the
entire chromosome. To start replication, a DNA polymerase needs a primer, a short
complementary segment (shown in red in Figure 1.5) that binds to the parent strand
and jump starts the DNA polymerase. After the strands start separating, each of the
four DNA polymerases starts replication by adding nucleotides, beginning with the
primer and proceeding around the chromosome from oriC to terC in either the clockwise
or counterclockwise direction. When all four DNA polymerases have reached terC, the
chromosome’s DNA will have been completely replicated, resulting in two pairs of
complementary strands (Figure 1.5 (bottom)), and the cell is ready to divide.

Yet while you were reading the description above, biology professors were writing a
petition to have us fired and sent back to Biology 101. And they would be right, because
our exposition suffers from a major flaw; we only described the replication process in
this way so that you can better appreciate what we are about to reveal.

The problem with our current description is that it assumes that DNA polymerases
can copy DNA in either direction along a strand of DNA (i.e., both 50 ! 30 and 30 ! 50).
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oriC 

oriC 

terC 

terC 

3’ 5’ 

3’ 5’ 

FIGURE 1.5 (Top) Four imaginary DNA polymerases at work replicating a chromosome
as the replication forks extend from oriC to terC. The blue strand is directed clockwise,
and the green strand is directed counterclockwise. (Bottom) Replication is complete.

However, nature has not yet equipped DNA polymerases with this ability, as they are
unidirectional, meaning that they can only traverse a template strand of DNA in the
30 ! 50 direction. Notice that this is opposite from the 50 ! 30 direction of DNA.

STOP and Think: If you were a unidirectional DNA polymerase, how would
you replicate DNA? How many DNA polymerases would be needed to complete
this task?
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The unidirectionality of DNA polymerase requires a major revision to our naive model
of replication. Imagine that you decided to walk along DNA from oriC to terC. There
are four different half-strands of parent DNA connecting oriC to terC, as highlighted
in Figure 1.6. Two of these half-strands are traversed from oriC to terC in the 50 ! 30

direction and are thus called forward half-strands (represented by thin blue and green
lines in Figure 1.6). The other two half-strands are traversed from oriC to terC in the
30 ! 50 direction and are thus called reverse half-strands (represented by thick blue
and green lines in Figure 1.6).

3’ 5’ 
oriC 

terC 

oriC 

terC 

3’ 5’ 

Reverse
half-strand 

Forward
half-strand 

Forward
half-strand 

Reverse
half-strand 

FIGURE 1.6 Complementary DNA strands with forward and reverse half-strands shown
as thin and thick lines, respectively.

Asymmetry of Replication

While biologists will feel at home with the following description of DNA replication,
computer scientists may find it overloaded with new terms. If it seems too biologically
complex, then feel free to skim this section, as long as you believe us that the replication
process is asymmetric, i.e., that forward and reverse half-strands have very different
fates with respect to replication.
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Since a DNA polymerase can only move in the reverse (30 ! 50) direction, it can
copy nucleotides non-stop from oriC to terC along reverse half-strands. However, repli-
cation on forward half-strands is very different because a DNA polymerase cannot
move in the forward (50 ! 30) direction; on these half-strands, a DNA polymerase must
replicate backwards toward oriC. Take a look at Figure 1.7 to see why this must be the case.

3’ 5’ 

3’ 5’ 

FIGURE 1.7 Replication begins at oriC (primers shown in red) with the synthesis of
fragments on the reverse half-strands (shown by thick lines). A DNA polymerase must
wait until the replication fork has opened some (small) distance before it starts copying
the forward half-strands (shown by thin lines) back toward oriC.

On a forward half-strand, in order to replicate DNA, a DNA polymerase must wait
for the replication fork to open a little (approximately 2,000 nucleotides) until a new
primer is formed at the end of the replication fork; afterwards, the DNA polymerase
starts replicating a small chunk of DNA starting from this primer and moving backward
in the direction of oriC. When the two DNA polymerases on forward half-strands reach
oriC, we have the situation shown in Figure 1.8. Note the contrast between this figure
and Figure 1.5.

After this point, replication on each reverse half-strand progresses continuously;
however, a DNA polymerase on a forward half-strand has no choice but to wait again
until the replication fork has opened another 2,000 nucleotides or so. It then requires a
new primer to begin synthesizing another fragment back toward oriC. On the whole,
replication on a forward half-strand requires occasional stopping and restarting, which
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3’ 5’ 

3’ 5’ 

FIGURE 1.8 The daughter fragments are now synthesized (with some delay) on the
forward half-strands (shown by thin lines).

results in the synthesis of short Okazaki fragments that are complementary to intervals
on the forward half-strand. You can see these fragments forming in Figure 1.9 (top).

When the replication fork reaches terC, the replication process is almost complete,
but gaps still remain between the disconnected Okazaki fragments (Figure 1.9 (middle)).

Finally, consecutive Okazaki fragments are sewn together by an enzyme called DNA
ligase, resulting in two intact daughter chromosomes, each consisting of one parent
strand and one newly synthesized daughter strand, as shown in Figure 1.9 (bottom).
In reality, DNA ligase does not wait until after all the Okazaki fragments have been
replicated to start sewing them together.

Biologists call a reverse half-strand a leading half-strand since a single DNA poly-
merase traverses this half-strand non-stop, and they call a forward half-strand a lagging
half-strand since it is used as a template by many DNA polymerases stopping and
starting replication. If you are confused about the differences between the leading and
lagging half-strands, you are not alone — we and legions of biology students are also
confused. The confusion is exacerbated by the fact that different textbooks use different
terminology depending on whether the authors intend to refer to a leading template
half-strand or a leading half-strand that is being synthesized from a (lagging) template
half-strand. You hopefully see why we have chosen the terms “reverse” and “forward”
half-strands in an attempt to mitigate some of this confusion.
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3’ 5’ 

3’ 5’ 

Okazaki fragments 

FIGURE 1.9 (Top) The replication fork continues growing. Only one primer is needed
for each of the reverse half-strands (shown by thick lines), while the forward half-strands
(shown by thin lines) require multiple primers in order to synthesize Okazaki fragments.
Two of these primers are shown in red on each forward half-strand. (Middle) Replication
is nearly complete, as all daughter DNA is synthesized. However, half of each daughter
chromosome contains disconnected Okazaki fragments. (Bottom) Okazaki fragments
have been sewn together, resulting in two intact daughter chromosomes.
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Peculiar Statistics of the Forward and Reverse Half-Strands

Deamination

In the last section, we saw that as the replication fork expands, DNA polymerase syn-
thesizes DNA quickly on the reverse half-strand but suffers delays on the forward
half-strand. We will explore the asymmetry of DNA replication to design a new algo-
rithm for finding oriC.

How in the world can the asymmetry of replication possibly help us locate oriC?
Notice that since the replication of a reverse half-strand proceeds quickly, it lives double-
stranded for most of its life. Conversely, a forward half-strand spends a much larger
amount of its life single-stranded, waiting to be used as a template for replication.
This discrepancy between the forward and reverse half-strands is important because
single-stranded DNA has a much higher mutation rate than double-stranded DNA. In
particular, if one of the four nucleotides in single-stranded DNA has a greater tendency
than other nucleotides to mutate in single-stranded DNA, then we should observe a
shortage of this nucleotide on the forward half-strand.

Following up on this thought, let’s compare the nucleotide counts of the reverse
and forward half-strands. If these counts differ substantially, then we will design an
algorithm that attempts to track down these differences in genomes for which oriC is
unknown. The nucleotide counts for Thermotoga petrophila are shown in Figure 1.10.

#C #G #A #T
Entire strand 427419 413241 491488 491363

Reverse half-strand 219518 201634 243963 246641
Forward half-strand 207901 211607 247525 244722

Difference +11617 -9973 -3562 +1919

FIGURE 1.10 Counting nucleotides in the Thermotoga petrophila genome on the for-
ward and reverse half-strands.

STOP and Think: Do you notice anything interesting about the nucleotide counts
in Figure 1.10?

Although the frequencies of A and T are practically identical on the two half-strands, C
is more frequent on the reverse half-strand than on the forward half-strand, resulting
in a difference of 219518� 207901 = +11617. Its complementary nucleotide G is less
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frequent on the reverse half-strand than on the forward half-strand, resulting in a
difference of 201634� 211607 = �9973.

It turns out that we observe these discrepancies because cytosine (C) has a tendency
to mutate into thymine (T) through a process called deamination. Deamination rates
rise 100-fold when DNA is single-stranded, which leads to a decrease in cytosine on
the forward half-strand, thus forming mismatched base pairs T-G. These mismatched
pairs can further mutate into T-A pairs when the bond is repaired in the next round
of replication, which accounts for the observed decrease in guanine (G) on the reverse
half-strand (recall that a forward parent half-strand synthesizes a reverse daughter
half-strand, and vice-versa).

STOP and Think: If deamination changes cytosine to thymine, why do you think
that the forward half-strand still has some cytosine?

The skew diagram

Let’s see if we can take advantage of these peculiar statistics caused by deamina-
tion to locate oriC. As Figure 1.10 illustrates, the difference between the total amount
of guanine and the total amount of cytosine is negative on the reverse half-strand
(211607� 207901 = 3706) and positive on the forward half-strand (201634� 219518 =

�17884). Thus, our idea is to traverse the genome, keeping a running total of the
difference between the counts of G and C. If this difference starts increasing, then we
guess that we are on the forward half-strand; on the other hand, if this difference starts
decreasing, then we guess that we are on the reverse half-strand. See Figure 1.11.

STOP and Think: Imagine that you are reading through the genome (in the
50 ! 30 direction) and notice that the difference between the guanine and cytosine
counts just switched its behavior from decreasing to increasing. Where in the
genome are you?

Since we don’t know the location of oriC in a circular genome, let’s linearize it (i.e., select
an arbitrary position and pretend that the genome begins here), resulting in a linear
string Genome. We define SKEWi(Genome) as the difference between the total number
of occurrences of G and the total number of occurrences of C in the first i nucleotides
of Genome. The skew diagram is defined by plotting SKEWi(Genome) as i ranges from
0 to |Genome|, where SKEW0(Genome) is set equal to zero. Figure 1.12 shows a skew
diagram for a short DNA string.
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FIGURE 1.11 Because of deamination, each forward half-strand has a shortage of
cytosine compared to guanine, and each reverse half-strand has a shortage of guanine
compared to cytosine. The dashed blue line illustrates an imaginary walk along the
outer strand of the genome counting the difference between the counts of G and C. We
assume that the difference between these counts is positive on the forward half-strand
and negative on the reverse half-strand.

Note that we can compute SKEWi+1(Genome) from SKEWi(Genome) according to the
nucleotide in position i of Genome. If this nucleotide is G, then SKEWi+1(Genome) =

SKEWi(Genome)+ 1; if this nucleotide is C, then SKEWi+1(Genome) = SKEWi(Genome)�
1; otherwise, SKEWi+1(Genome) = SKEWi(Genome).
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FIGURE 1.12 The skew diagram for Genome = CATGGGCATCGGCCATACGCC.

Figure 1.13 depicts the skew diagram for a linearized E. coli genome. Notice the
very clear pattern! It turns out that the skew diagram for many bacterial genomes has a
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similar characteristic shape.

STOP and Think: After looking at the skew diagram in Figure 1.13, where do
you think that oriC is located in E. coli?
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FIGURE 1.13 The skew diagram for E. coli achieves a maximum and minimum at
positions 1550413 and 3923620, respectively.

Let’s follow the 50 ! 30 direction of DNA and walk along the chromosome from
terC to oriC (along a reverse half-strand), then continue on from oriC to terC (along
a forward half-strand). In Figure 1.11, we saw that the skew is decreasing along the
reverse half-strand and increasing along the forward half-strand. Thus, the skew should
achieve a minimum at the position where the reverse half-strand ends and the forward
half-strand begins, which is exactly the location of oriC! We have just developed an
algorithm for locating oriC: it should be found where the skew attains a minimum.

Minimum Skew Problem:
Find a position in a genome where the skew diagram attains a minimum.

Input: A DNA string Genome.
Output: All integer(s) i minimizing SKEWi(Genome) among all values of i
(from 0 to |Genome|).

1F
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STOP and Think: Note that the skew diagram changes depending on where we
start our walk along the circular chromosome. Do you think that the minimum of
the skew diagram points to the same position in the genome regardless of where
we begin walking to generate the skew diagram?

Some Hidden Messages are More Elusive than Others

Solving the Minimum Skew Problem now provides us with an approximate location of
oriC at position 3923620 in E. coli. In an attempt to confirm this hypothesis, let’s look
for a hidden message representing a potential DnaA box near this location. Solving the
Frequent Words Problem in a window of length 500 starting at position 3923620 (shown
below) reveals no 9-mers (along with their reverse complements) that appear three or
more times! Even if we have located oriC in E. coli, it appears that we still have not
found the DnaA boxes that jump-start replication in this bacterium . . .

aatgatgatgacgtcaaaaggatccggataaaacatggtgattgcctcgcataacgcggt
atgaaaatggattgaagcccgggccgtggattctactcaactttgtcggcttgagaaaga
cctgggatcctgggtattaaaaagaagatctatttatttagagatctgttctattgtgat
ctcttattaggatcgcactgccctgtggataacaaggatccggcttttaagatcaacaac
ctggaaaggatcattaactgtgaatgatcggtgatcctggaccgtataagctgggatcag
aatgaggggttatacacaactcaaaaactgaacaacagttgttctttggataactaccgg
ttgatccaagcttcctgacagagttatccacagtagatcgcacgatctgtatacttattt
gagtaaattaacccacgatcccagccattcttctgccggatcttccggaatgtcgtgatc
aagaatgttgatcttcagtg

STOP and Think: What would you do next?

Before we give up, let’s examine the oriC of Vibrio cholerae one more time to see if it
provides us with any insights on how to alter our algorithm to find DnaA boxes in E.
coli. You may have noticed that in addition to the three occurrences of ATGATCAAG
and three occurrences of its reverse complement CTTGATCAT, the Vibrio cholerae oriC
contains additional occurrences of ATGATCAAC and CATGATCAT, which differ from
ATGATCAAG and CTTGATCAT in only a single nucleotide:
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atcaATGATCAACgtaagcttctaagcATGATCAAGgtgctcacacagtttatccacaac
ctgagtggatgacatcaagataggtcgttgtatctccttcctctcgtactctcatgacca
cggaaagATGATCAAGagaggatgatttcttggccatatcgcaatgaatacttgtgactt
gtgcttccaattgacatcttcagcgccatattgcgctggccaaggtgacggagcgggatt
acgaaagCATGATCATggctgttgttctgtttatcttgttttgactgagacttgttagga
tagacggtttttcatcactgactagccaaagccttactctgcctgacatcgaccgtaaat
tgataatgaatttacatgcttccgcgacgatttacctCTTGATCATcgatccgattgaag
atcttcaattgttaattctcttgcctcgactcatagccatgatgagctCTTGATCATgtt
tccttaaccctctattttttacggaagaATGATCAAGctgctgctCTTGATCATcgtttc

Finding eight approximate occurrences of our target 9-mer and its reverse comple-
ment in a short region is even more statistically surprising than finding the six exact
occurrences of ATGATCAAG and its reverse complement CTTGATCAT that we stumbled
upon in the beginning of our investigation. Furthermore, the discovery of these approx-
imate 9-mers makes sense biologically, since DnaA can bind not only to “perfect” DnaA
boxes but to their slight variations as well.

We say that position i in k-mers p1 · · · pk and q1 · · · qk is a mismatch if pi 6= qi. The
number of mismatches between strings p and q is called the Hamming distance be-
tween these strings and is denoted HAMMINGDISTANCE(p, q).

Hamming Distance Problem:
Compute the Hamming distance between two strings.

Input: Two strings of equal length.
Output: The Hamming distance between these strings.

1G

We say that a k-mer Pattern appears as a substring of Text with at most d mismatches
if there is some k-mer substring Pattern’ of Text having d or fewer mismatches with
Pattern, i.e., HAMMINGDISTANCE(Pattern, Pattern0)  d. Our observation that a DnaA
box may appear with slight variations leads to the following generalization of the
Pattern Matching Problem.

Approximate Pattern Matching Problem:
Find all approximate occurrences of a pattern in a string.

Input: Strings Pattern and Text along with an integer d.
Output: All starting positions where Pattern appears as a substring of Text
with at most d mismatches.

1H
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Our goal now is to modify our previous algorithm for the Frequent Words Problem in
order to find DnaA boxes by identifying frequent k-mers, possibly with mismatches.
Given strings Text and Pattern as well as an integer d, we define COUNTd(Text, Pattern)
as the number of occurrences of Pattern in Text with at most d mismatches. For example,

COUNT1(AACAAGCATAAACATTAAAGAG, AAAAA) = 4

because AAAAA appears four times in this string with at most one mismatch: AACAA,
ATAAA, AAACA, and AAAGA. Notice that two of these occurrences overlap.

EXERCISE BREAK: Compute COUNT2(AACAAGCATAAACATTAAAGAG, AAAAA).

Computing COUNTd(Text, Pattern) simply requires us to compute the Hamming dis-
tance between Pattern and every k-mer substring of Text, as follows.

APPROXIMATEPATTERNCOUNT(Text, Pattern, d)
count 0
for i 0 to |Text|� |Pattern|

Pattern’ Text(i, |Pattern|)
if HAMMINGDISTANCE(Pattern, Pattern’)  d

count count + 1
return count

EXERCISE BREAK: Implement APPROXIMATEPATTERNCOUNT. What is its
running time?

A most frequent k-mer with up to d mismatches in Text is simply a string Pattern max-
imizing COUNTd(Text, Pattern) among all k-mers. Note that Pattern does not need to
actually appear as a substring of Text; for example, as we saw above, AAAAA is the most
frequent 5-mer with 1 mismatch in AACAAGCATAAACATTAAAGAG, even though it does
not appear exactly in this string. Keep this in mind while solving the following problem.

Frequent Words with Mismatches Problem:
Find the most frequent k-mers with mismatches in a string.

Input: A string Text as well as integers k and d.
Output: All most frequent k-mers with up to d mismatches in Text.

1I
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CHARGING STATION (Solving the Frequent Words with Mismatches Prob-
lem): One way to solve the above problem is to generate all 4k k-mers Pattern,
compute COUNTd(Text, Pattern, d) for each k-mer, and then output k-mers with
the maximum number of approximate occurrences. This is an inefficient approach
in practice, since many of the 4k k-mers that this method analyzes should not
be considered because neither they nor their mutated versions (with up to d
mismatches) appear in Text. Check out this Charging Station to learn about a
better approach that avoids analyzing such hopeless k-mers.

PAGE
47

We now redefine the Frequent Words Problem to account for both mismatches and
reverse complements. Recall that Pattern refers to the reverse complement of Pattern.

Frequent Words with Mismatches and Reverse Complements Problem:
Find the most frequent k-mers (with mismatches and reverse complements) in a string.

Input: A DNA string Text as well as integers k and d.
Output: All k-mers Pattern that maximize the sum COUNTd(Text, Pattern) +
COUNTd(Text, Pattern) over all possible k-mers.

1J

A Final Attempt at Finding DnaA Boxes in E. coli

We now make a final attempt to find DnaA boxes in E. coli by finding the most frequent
9-mers with mismatches and reverse complements in the region suggested by the
minimum skew as oriC. Although the minimum of the skew diagram for E. coli is found
at position 3923620, we should not assume that its oriC is found exactly at this position
due to random fluctuations in the skew. To remedy this issue, we could choose a larger
window size (e.g., L = 1000), but expanding the window introduces the risk that we
may bring in other clumped 9-mers that do not represent DnaA boxes but appear in this
window more often than the true DnaA box. It makes more sense to try a small window
either starting, ending, or centered at the position of minimum skew.

Let’s cross our fingers and identify the most frequent 9-mers (with 1 mismatch and re-
verse complements) within a window of length 500 starting at position 3923620 of the E.
coli genome. Bingo! The experimentally confirmed DnaA box in E. coli (TTATCCACA) is a
most frequent 9-mer with 1 mismatch, along with its reverse complement TGTGGATAA:
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aatgatgatgacgtcaaaaggatccggataaaacatggtgattgcctcgcataacgcggt
atgaaaatggattgaagcccgggccgtggattctactcaactttgtcggcttgagaaaga
cctgggatcctgggtattaaaaagaagatctatttatttagagatctgttctattgtgat
ctcttattaggatcgcactgcccTGTGGATAAcaaggatccggcttttaagatcaacaac
ctggaaaggatcattaactgtgaatgatcggtgatcctggaccgtataagctgggatcag
aatgaggggTTATACACAactcaaaaactgaacaacagttgttcTTTGGATAActaccgg
ttgatccaagcttcctgacagagTTATCCACAgtagatcgcacgatctgtatacttattt
gagtaaattaacccacgatcccagccattcttctgccggatcttccggaatgtcgtgatc
aagaatgttgatcttcagtg

You will notice that we highlighted an interior interval of this sequence with darker text.
This region is the experimentally verified oriC of E. coli, which starts 37 nucleotides after
position 3923620, where the skew reaches its minimum value.

We were fortunate that the DnaA boxes of E. coli are captured in the window that
we chose. Moreover, while TTATCCACA represents a most frequent 9-mer with 1 mis-
match and reverse complements in this 500-nucleotide window, it is not the only one:
GGATCCTGG, GATCCCAGC, GTTATCCAC, AGCTGGGAT, and CTGGGATCA also appear
four times with 1 mismatch and reverse complements.

STOP and Think: In this chapter, every time we find oriC, we seem to find some
other surprisingly frequent 9-mers. Why do you think this is?

We do not know what purpose — if any — these other 9-mers serve in the E. coli genome,
but we do know that there are many different types of hidden messages in genomes; these
hidden messages have a tendency to cluster within a genome, and most of them have
nothing to do with replication. One example is the regulatory DNA motifs responsible
for gene expression that we will study in Chapter 2. The important lesson is that existing
approaches to oriC prediction remain imperfect and sometimes inconclusive. However,
even providing biologists with a small collection of 9-mers as candidate DnaA boxes is
a great aid as long as one of these 9-mers is correct.

Thus, the moral of this chapter is that even though computational predictions can
be powerful, bioinformaticians should collaborate with biologists to verify their compu-
tational predictions. Or improve these predictions: the next question hints at how oriC
predictions can be carried out using comparative genomics, a bioinformatics approach
that uses evolutionary similarities to answer difficult questions about genomes.

STOP and Think: Salmonella enterica is a close relative of E. coli that causes
typhoid fever and foodborne illness. After having learned what DnaA boxes look
like in E. coli, how would you search for DnaA boxes in Salmonella enterica?
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You will have an opportunity to look for DnaA boxes in Salmonella enterica in the epi-
logue, which will feature a “Challenge Problem” asking you to apply what you have
learned to a real dataset. Some chapters also have an “Open Problems” section outlining
unanswered research questions.

Epilogue: Complications in oriC Predictions

In this chapter, we have considered three genomes and found three different hypoth-
esized 9-mers encoding DnaA boxes: ATGATCAAG in Vibrio cholerae, CCTACCACC in
Thermotoga petrophila, and TTATCCACA in E. coli. We must warn you that finding oriC
is often more complex than in the three examples we considered. Some bacteria have
even fewer DnaA boxes than E. coli, making it difficult to identify them. The terC region
is often located not directly opposite to oriC but may be significantly shifted, resulting
in reverse and forward half-strands having substantially different lengths. The position
of the skew minimum is often only a rough indicator of oriC position, which forces
researchers to expand their windows when searching for DnaA boxes, bringing in extra-
neous repeated substrings. Finally, skew diagrams do not always look as nice as that
of E. coli; for example, the skew diagram for Thermotoga petrophila is shown in Figure 1.14.
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FIGURE 1.14 The skew diagram for Thermotoga petrophila achieves a minimum at
position 787199 but does not have the same nice shape as the skew diagram for E. coli.

STOP and Think: What evolutionary process could possibly explain the shape
of the skew diagram for Thermotoga petrophila?
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Since the skew diagram for Thermotoga petrophila is complex and the oriC for this genome
has not even been experimentally verified, there is a chance that the region predicted
by Ori-Finder as the oriC region for Thermotoga petrophila (or even for Vibrio cholerae) is
actually incorrect!

You now should have a good sense of how to locate oriC and DnaA boxes compu-
tationally. We will take the training wheels off and ask you to solve a challenge problem.

CHALLENGE PROBLEM: FindFind DnaADnaA boxes inboxes in Salmonella entericaSalmonella enterica..
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Open Problems

Multiple replication origins in a bacterial genome

Biologists long believed that each bacterial chromosome has only one oriC. Wang et al.,
2011 genetically modified E. coli by inserting a synthetic oriC a million nucleotides away
from the bacterium’s known oriC. To their surprise, E. coli continued business as usual,
starting replication at both locations!

Following the publication of this paper, the search for naturally occurring bacteria
with multiple oriCs immediately started. In 2012, Xia raised doubts about the “single
oriC” postulate and gave examples of bacteria with highly unusual skews. In fact,
having more than one oriC makes sense in the light of evolution: if the genome is long
and replication is slow, then multiple replication origins would decrease the amount of
time that the bacterium must spend replicating its DNA.

For example, Wigglesworthia glossinidia, a symbiotic bacterium living in the intestines
of tsetse flies, has the atypical skew diagram shown in Figure 1.15. Since this diagram
has at least two pronounced local minima, Xia argued that this bacterium may have
two or more oriC regions.

We should be careful with Xia’s hypothesis that this bacterium has two oriCs, as
there may be alternative explanations for multiple local minima in the skew. For
example, genome rearrangements (which we will study in Chapter 6) move genes
within a genome and often reposition them from the forward to the reverse half-strand
and vice-versa, thus resulting in irregularities in the skew diagram. One example of a
genome rearrangement is a reversal, which flips around a segment of chromosome and
switches it to the opposite strand; Figure 1.16 shows what happens to the skew diagram
after a reversal.

Another difficulty is presented by the fact that different species of bacteria may
exchange genetic material in horizontal gene transfer. If a gene from the forward
half-strand of one bacterium is transferred to the reverse half-strand of another (or
vice-versa), then we will observe an irregularity in the skew diagram. As a result, the
question about the number of oriCs of Wigglesworthia glossinidia remains unresolved.

However, if you could demonstrate that there exist two sets of identical DnaA boxes
in the vicinity of two local minima in the skew diagram of Wigglesworthia glossinidia,
then you would have the first solid evidence in favor of multiple bacterial oriCs. Maybe
simply applying your solution for the Frequent Words with Mismatches and Reverse
Complements Problem will reveal these DnaA boxes. Can you find other bacterial
genomes where a single oriC is in doubt and check whether they indeed have multiple
oriCs?
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FIGURE 1.15 The skew diagram for Wigglesworthia glossinidia.
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FIGURE 1.16 (Left) An “ideal” V-shaped skew diagram that achieves minimum skew at
oriC. The skew diagram decreases along the reverse half-strand (shown by a thick line)
and increases along the forward half-strand (shown by a thin line). We assume that a
circular chromosome was cut at terC, resulting in a linear chromosome that starts and
ends at terC. (Right) A skew diagram after a reversal that switches segments between the
reverse and forward strands and alters the skew diagram. As before, the skew diagram
still decreases along the segments of the genome shown by thick lines and increases
along the segments shown by thin lines.
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Finding replication origins in archaea

Archaea are unicellular organisms so distinct from other life forms that biologists have
placed them into their own domain of life separate from bacteria and eukaryotes. Al-
though archaea are visually similar to bacteria, they have some genomic features that are
more closely related to eukaryotes. In particular, the replication machinery of archaea
is more similar to eukaryotes than bacteria. Yet archaea use a much greater variety of
energy sources than eukaryotes, feeding on ammonia, metals, or even hydrogen gas.

Figure 1.17 shows the skew diagram of Sulfolobus solfataricus, a species of archaea
growing in acidic volcanic springs in temperatures over 80� C. In its skew diagram, you
can see at least three local minima, represented by deep valleys, in addition to many
more shallow valleys.
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FIGURE 1.17 The skew diagram of Sulfolobus solfataricus.

Lundgren et al., 2004 demonstrated experimentally that Sulfolobus solfataricus indeed
has three oriCs. Since then, multiple oriCs have been identified in many other archaea.
However, no accurate computational approach has been developed to identify multiple
oriCs in a newly sequenced archaea genome. For example, the methane-producing
archaea Methanococcus jannaschii is considered the workhorse of archaea genomics, but
its oriC(s) still remain unidentified! Its skew diagram (shown in Figure 1.18) suggests
that it may have multiple oriCs: can you find them?
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FIGURE 1.18 The skew diagram for Methanococcus jannaschii.

Finding replication origins in yeast

If you think that finding replication origins in bacteria is a complex problem, wait until
you analyze replication origins in more complex organisms like yeast or humans, which
have hundreds of replication origins. Among various yeast species, the yeast Saccha-
romyces cerevisiae has the best characterized replication origins. It has approximately 400
different oriCs, many of which may be used during the replication of any single yeast
cell.

Having a large number of oriCs results in dozens of replication forks hurtling
towards each other from different locations in the genome in ways that are not yet
completely understood. However, researchers have discovered that the replication
origins of S. cerevisiae share a (somewhat variable) pattern called the ARS Consensus
Sequence (ACS). The ACS is the binding site for the so-called Origin Recognition
Complex, which initiates the loading of additional proteins required for origin firing.
Many ACSs correspond to the following canonical thymine-rich pattern of length 11.

TTTAT(G/A)TTT(T/A)(G/T)

Here, the notation (X/Y) indicates that either nucleotide X or nucleotide Y may appear
in that position.

However, various ACSs may differ from this canonical pattern, with lengths varying
from 11 to 17 nucleotides. For example, the 11-nucleotide long pattern shown above is
often part of a 17-nucleotide pattern:
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(T/A)(T/A)(T/A)(T/A)TTTAT(G/A)TTT(T/A)(G/T)(T/G)(T/C)

Recently, some progress has been made in characterizing the ACS in a few other
yeast species. In some species like S. bayanus, the ACS is almost identical to that of S.
cerevisiae, while in others such as K. lactis, it is very different. More alarmingly, at least
for bioinformaticians, in some yeast species such as S. pombe, the Origin Recognition
Complex binds to loosely defined AT-rich regions, which makes it next to impossible to
find replication origins based on sequence analysis alone.

Despite recent efforts, finding oriCs in yeast remains an open problem, and no
accurate software exists for predicting origins of replication from the sequence of yeast
genomes. Can you explore this problem and devise an algorithm to predict replication
origins in yeast?

Computing probabilities of patterns in a string

In the main text, we told you that the probability that a random DNA string of length 500
contains a 9-mer appearing three or more times is approximately 1/1300. In DETOUR: PAGEPAGE 5252
Probabilities of Patterns in a String, we describe a method to estimate this probability,
but it is rather inaccurate. This open problem is aimed at finding better approximations
or even deriving exact formulas for probabilities of patterns in strings.

We start by asking a question: what is the probability that a specific k-mer Pattern
will appear (at least once) as a substring of a random string of length N? This question
proved to be not so simple and was first addressed by Solov’ev, 1966 (see also Sedgewick
and Flajolet, 2013).

The first surprise is that different k-mers may have different probabilities of appear-
ing in a random string. For example, the probability that Pattern = "01" appears in a
random binary string of length 4 is 11/16, while the probability that Pattern = "11"

appears in a random binary string of length 4 is 8/16. This phenomenon is called
the overlapping words paradox because different occurrences of Pattern can overlap
each other for some patterns (e.g., "11") but not others (e.g., "01"). See DETOUR: The PAGEPAGE 6262
Overlapping Words Paradox.

We are interested in computing the following probabilities for a random N-letter
string in an A-letter alphabet:

• Pr(N, A, Pattern, t), the probability that a string Pattern appears at least t times in
a random string;

• Pr⇤(N, A, Pattern, t), the probability that a string Pattern and its reverse comple-
ment Pattern appear at least t total times in a random string.
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Note that the above two probabilities are relatively straightforward to compute.
Several variants of these questions are open:

• Prd(N, A, Pattern, t), the probability that a string Pattern approximately appears
at least t times in a random string (with at most d mismatches);

• Pr(N, A, k, t), the probability that there exists any k-mer appearing at least t times
in a random string;

• Prd(N, A, k, t), the probability that there exists any k-mer with at least t approxi-
mate occurrences in a random string (with at most d mismatches).
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Charging Stations

The frequency array

To make FREQUENTWORDS faster, we will think about why this algorithm is slow in
the first place. It slides a window of length k down Text, identifying a k-mer Pattern of
Text at each step. For each such k-mer, it must slide a window down the entire length
of Text in order to compute PATTERNCOUNT(Text, Pattern). Instead of doing all this
sliding, we aspire to slide a window down Text only once. As we slide this window, we
will keep track of the number of times that each k-mer Pattern has already appeared in
Text, updating these numbers as we proceed.

To achieve this goal, we will first order all 4k k-mers lexicographically (i.e., accord-
ing to how they would appear in the dictionary) and then convert them into the 4k

different integers between 0 and 4k � 1. Given an integer k, we define the frequency
array of a string Text as an array of length 4k, where the i-th element of the array holds
the number of times that the i-th k-mer (in the lexicographic order) appears in Text
(Figure 1.19).

k -mer AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT
index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

frequency 3 0 2 0 1 0 0 0 0 1 3 1 0 0 1 0

FIGURE 1.19 The lexicographic order of DNA 2-mers (top), along with the index of each
2-mer in this order (middle), and the frequency array for AAGCAAAGGTGGG (bottom).
For example, the frequency array at index 10 is equal to 3 because GG, the tenth DNA
2-mer according to lexicographic order, occurs three times in AAGCAAAGGTGGG.

To compute the frequency array, we need to determine how to transform a k-mer
Pattern into an integer using a function PATTERNTONUMBER(Pattern). We also should
know how to reverse this process, transforming an integer between 0 and 4k � 1 into
a k-mer using a function NUMBERTOPATTERN(index, k). Figure 1.19 illustrates that
PATTERNTONUMBER(GT) = 11 and NUMBERTOPATTERN(11, 2) = GT.

EXERCISE BREAK: Compute the following:

1. PATTERNTONUMBER(ATGCAA)

2. NUMBERTOPATTERN(5437, 7)

3. NUMBERTOPATTERN(5437, 8)
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CHARGING STATION (Converting Patterns Into Numbers and Vice-Versa):
Check out this Charging Station to see how to implement PATTERNTONUMBER

and NUMBERTOPATTERN.PAGE
41

The pseudocode below generates a frequency array by first initializing every element in
the frequency array to zero (4k operations) and then making a single pass down Text
(approximately |Text| · k operations). For each k-mer Pattern that we encounter, we add
1 to the value of the frequency array corresponding to Pattern. As before, we refer to the
k-mer beginning at position i of Text as Text(i, k).

COMPUTINGFREQUENCIES(Text, k)
for i 0 to 4k � 1

FREQUENCYARRAY(i) 0

for i 0 to |Text|� k
Pattern Text(i, k)
j PATTERNTONUMBER(Pattern)
FREQUENCYARRAY(j) FREQUENCYARRAY(j) + 1

return FREQUENCYARRAY

1K

We now have a faster algorithm for the Frequent Words Problem. After generating
the frequency array, we can find all most frequent k-mers by simply finding all k-mers
corresponding to the maximum element(s) in the frequency array.

FASTERFREQUENTWORDS(Text , k)
FrequentPatterns an empty set
FREQUENCYARRAY  COMPUTINGFREQUENCIES(Text, k)
maxCount maximal value in FREQUENCYARRAY

for i 0 to 4k � 1
if FREQUENCYARRAY(i) = maxCount

Pattern NUMBERTOPATTERN(i, k)
add Pattern to the set FrequentPatterns

return FrequentPatterns
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CHARGING STATION (Finding Frequent Words by Sorting): Although
FASTERFREQUENTWORDS is fast for small k (i.e., you can use it to find DnaA
boxes in an oriC region), it becomes impractical when k is large. If you are familiar
with sorting algorithms and are interested in seeing a faster algorithm, check out
this Charging Station.

PAGE
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EXERCISE BREAK: Our claim that FASTERFREQUENTWORDS is faster than
FREQUENTWORDS is only correct for certain values of |Text| and k. Esti-
mate the running time of FASTERFREQUENTWORDS and characterize the val-
ues of |Text| and k when FASTERFREQUENTWORDS is indeed faster than
FREQUENTWORDS.

Converting patterns to numbers and vice-versa

Our approach to computing PATTERNTONUMBER(Pattern) is based on a simple obser-
vation. If we remove the final symbol from all lexicographically ordered k-mers, the
resulting list is still ordered lexicographically (think about removing the final letter
from every word in a dictionary). In the case of DNA strings, every (k� 1)-mer in the
resulting list is repeated four times (Figure 1.20).

AAA AAC AAG AAT ACA ACC ACG ACT
AGA AGC AGG AGT ATA ATC ATG ATT
CAA CAC CAG CAT CCA CCC CCG CCT
CGA CGC CGG CGT CTA CTC CTG CTT
GAA GAC GAG GAT GCA GCC GCG GCT
GGA GGC GGG GGT GTA GTC GTG GTT
TAA TAC TAG TAT TCA TCC TCG TCT
TGA TGC TGG TGT TTA TTC TTG TTT

FIGURE 1.20 If we remove the final symbol from all lexicographically ordered DNA
3-mers, we obtain a lexicographic order of (red) 2-mers, where each 2-mer is repeated
four times.

Thus, the number of 3-mers occurring before AGT is equal to four times the number
of 2-mers occurring before AG plus the number of 1-mers occurring before T. Therefore,

PATTERNTONUMBER(AGT) = 4 · PATTERNTONUMBER(AG) + SYMBOLTONUMBER(T)

= 8 + 3 = 11 ,
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where SYMBOLTONUMBER(symbol) is the function transforming symbols A, C, G, and T
into the respective integers 0, 1, 2, and 3.

If we remove the final symbol of Pattern, denoted LASTSYMBOL(Pattern), then we
will obtain a (k� 1)-mer that we denote as PREFIX(Pattern). The preceding observation
therefore generalizes to the formula

PATTERNTONUMBER(Pattern) = 4 · PATTERNTONUMBER(PREFIX(Pattern))+

SYMBOLTONUMBER(LASTSYMBOL(Pattern)) . (*)

This equation leads to the following recursive algorithm, i.e., a program that calls itself.
If you want to learn more about recursive algorithms, see DETOUR: The Towers ofPAGE 60
Hanoi.

PATTERNTONUMBER(Pattern)
if Pattern contains no symbols

return 0
symbol LASTSYMBOL(Pattern)
Prefix PREFIX(Pattern)
return 4 · PATTERNTONUMBER(Prefix) + SYMBOLTONUMBER(symbol)

1L

In order to compute the inverse function NUMBERTOPATTERN(index, k), we return to
(*) above, which implies that when we divide index = PATTERNTONUMBER(Pattern)
by 4, the remainder will be equal to SYMBOLTONUMBER(symbol), and the quotient will
be equal to PATTERNTONUMBER(PREFIX(Pattern)). Thus, we can use this fact to peel
away symbols at the end of Pattern one at a time, as shown in Figure 1.21.

STOP and Think: Once we have computed NUMBERTOPATTERN(9904, 7) in
Figure 1.21, how would you compute NUMBERTOPATTERN(9904, 8)?

In the pseudocode below, we denote the quotient and the remainder when dividing
integer n by integer m as QUOTIENT(n, m) and REMAINDER(n, m), respectively. For
example, QUOTIENT(11, 4) = 2 and REMAINDER(11, 4) = 3. This pseudocode uses the
function NUMBERTOSYMBOL(index), which is the inverse of SYMBOLTONUMBER and
transforms the integers 0, 1, 2, and 3 into the respective symbols A, C, G, and T.
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n QUOTIENT(n, 4) REMAINDER(n, 4) NUMBERTOSYMBOL

9904 2476 0 A
2476 619 0 A

619 154 3 T
154 38 2 G

38 9 2 G
9 2 1 C
2 0 2 G

⇠⇠⇠⇠9 ⇠⇠⇠⇠9 ⇠⇠⇠⇠9 ⇠⇠⇠⇠9 ⇠⇠⇠⇠9 ⇠⇠⇠⇠9

FIGURE 1.21 When computing Pattern = NUMBERTOPATTERN(9904, 7), we divide
9904 by 4 to obtain a quotient of 2476 and a remainder of 0. This remainder represents
the final nucleotide of Pattern, or NUMBERTOSYMBOL(0) = A. We then iterate this
process, dividing each subsequent quotient by 4, until we obtain a quotient of 0. The
symbols in the nucleotide column, read upward from the bottom, yield Pattern =
GCGGTAA.

NUMBERTOPATTERN(index , k)
if k = 1

return NUMBERTOSYMBOL(index)

prefixIndex QUOTIENT(index, 4)
r REMAINDER(index, 4)
symbol NUMBERTOSYMBOL(r)
PrefixPattern NUMBERTOPATTERN(prefixIndex, k� 1)
return concatenation of PrefixPattern with symbol

1M

Finding frequent words by sorting

To see how sorting can help us find frequent k-mers, we will consider a motivating exam-
ple when k = 2. Given a string Text = AAGCAAAGGTGGG, list all its 2-mers in the order
they appear in Text, and convert each 2-mer into an integer using PATTERNTONUMBER

to produce an array INDEX, as shown below.

2-mer AA AG GC CA AA AA AG GG GT TG GG GG
INDEX 0 2 9 4 0 0 2 10 11 14 10 10

We will now sort INDEX to generate an array SORTEDINDEX, as shown in Figure 1.22.

STOP and Think: How can the sorted array in Figure 1.22 help us find frequent
words?
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2-mer AA AA AA AG AG CA GC GG GG GG GT TG
SORTEDINDEX 0 0 0 2 2 4 9 10 10 10 11 14

COUNT 1 2 3 1 2 1 1 1 2 3 1 1

FIGURE 1.22 Lexicographically sorted 2-mers in AAGCAAAGGTGG (top), along with
arrays SORTEDINDEX (middle) and COUNT (bottom).

Since identical k-mers clump together in the sorted array (like (0, 0, 0) for AA or
(10, 10, 10) for GG in Figure 1.22), frequent k-mers are the longest runs of identical inte-
gers in SORTEDINDEX. This insight leads to FINDINGFREQUENTWORDSBYSORTING,
whose pseudocode is shown below. This algorithm uses an array COUNT for which
COUNT(i) computes the number of times that the integer at position i in the array
SORTEDINDEX appears in the first i elements of this array (Figure 1.22 (bottom)). In the
pseudocode for FINDINGFREQUENTWORDSBYSORTING, we assume that you already
know how to sort an array using an algorithm SORT.

FINDINGFREQUENTWORDSBYSORTING(Text , k)
FrequentPatterns an empty set
for i 0 to |Text|� k

Pattern Text(i, k)
INDEX(i) PATTERNTONUMBER(Pattern)
COUNT(i) 1

SORTEDINDEX  SORT(INDEX)

for i 1 to |Text|� k
if SORTEDINDEX(i) = SORTEDINDEX(i� 1)

COUNT(i) = COUNT(i� 1) + 1

maxCount maximum value in the array COUNT

for i 0 to |Text|� k
if COUNT(i) = maxCount

Pattern NUMBERTOPATTERN(SORTEDINDEX(i), k)
add Pattern to the set FrequentPatterns

return FrequentPatterns

Solving the Clump Finding Problem

Note: This Charging Station assumes that you have read CHARGING STATION: The
PAGE
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Frequency Array.
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The pseudocode below slides a window of length L down Genome. After computing
the frequency array for the current window, it identifies (L, t)-clumps simply by finding
which k-mers occur at least t times within the window. To keep track of these clumps,
our algorithm uses an array CLUMP of length 4k whose values are all initialized to
zero. For each value of i between 0 and 4k � 1, we will set CLUMP(i) equal to 1 if
NUMBERTOPATTERN(i, k) forms an (L, t)-clump in Genome.

CLUMPFINDING(Genome, k, t, L)
FrequentPatterns an empty set
for i 0 to 4k � 1

CLUMP(i) 0

for i 0 to |Genome|� L
Text the string of length L starting at position i in Genome
FREQUENCYARRAY  COMPUTINGFREQUENCIES(Text, k)
for index 0 to 4k � 1

if FREQUENCYARRAY(index) � t
CLUMP(index) 1

for i 0 to 4k � 1
if CLUMP(i) = 1

Pattern NUMBERTOPATTERN(i, k)
add Pattern to the set FrequentPatterns

return FrequentPatterns

EXERCISE BREAK: Estimate the running time of CLUMPFINDING.

CLUMPFINDING makes |Genome|� L + 1 iterations, generating a frequency array for a
string of length L at each iteration. Since this task takes roughly 4k + L · k time, the over-
all running time of CLUMPFINDING is O

⇣
|Genome| · (4k + L · k)

⌘
. As a result, when

searching for DnaA boxes (k = 9) in a typical bacterial genome (|Genome| > 1000000),
CLUMPFINDING becomes too slow.

STOP and Think: Can you speed up CLUMPFINDING by eliminating the need
to generate a new frequency array at every iteration?

To improve CLUMPFINDING, we observe that when we slide our window of length L
one symbol to the right, the frequency array does not change much, and so regener-
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ating the frequency array from scratch is inefficient. For example, Figure 1.23 shows
the frequency arrays (k = 2) for the 13-mers Text = AAGCAAAGGTGGG and Text0 =
AGCAAAGGTGGGC starting at positions 0 and 1 of the 14-mer AAGCAAAGGTGGGC. These
two frequency arrays differ in only two elements corresponding to the first k-mer in
Text (AA) and the last k-mer in Text’ (GC). Specifically, the frequency array value corre-
sponding to the first k-mer of Text is reduced by 1 in the frequency array of Text’, and
the frequency array value corresponding to the last k-mer of Text is increased by 1 in
the frequency array of Text’.

This observation helps us modify CLUMPFINDING as shown below. Note that we
now only call COMPUTINGFREQUENCIES once, updating the frequency array as we go
along.

BETTERCLUMPFINDING(Genome, k, t, L)
FrequentPatterns an empty set
for i 0 to 4k � 1

CLUMP(i) 0

Text Genome(0, L)
FREQUENCYARRAY  COMPUTINGFREQUENCIES(Text, k)
for i 0 to 4k � 1

if FREQUENCYARRAY(i) � t
CLUMP(i) 1

for i 1 to |Genome|� L
FirstPattern Genome(i� 1, k)
index PATTERNTONUMBER(FirstPattern)
FREQUENCYARRAY(index) FREQUENCYARRAY(index)� 1
LastPattern Genome(i + L� k, k)
index PATTERNTONUMBER(LastPattern)
FREQUENCYARRAY(index) FREQUENCYARRAY(index) + 1
if FREQUENCYARRAY(index) � t

CLUMP(index) 1

for i 0 to 4k � 1
if CLUMP(i) = 1

Pattern NUMBERTOPATTERN(i, k)
add Pattern to the set FrequentPatterns

return FrequentPatterns
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k-mer AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT
INDEX 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

frequency 3 0 2 0 1 0 0 0 0 1 3 1 0 0 1 0
frequency’ 2 0 2 0 1 0 0 0 0 2 3 1 0 0 1 0

FIGURE 1.23 The frequency arrays for two consecutive substrings of length 13 starting
at positions 0 and 1 of AAGCAAAGGTGGGC are very similar to each other.

Solving the Frequent Words with Mismatches Problem

Note: This Charging Station uses some notation from CHARGING STATION: The
PAGE
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Frequency Array.

To prevent having to generate all 4k k-mers in order to solve the Frequent Words with
Mismatches Problem, our goal is to consider only those k-mers that are close to a k-mer
in Text, i.e., those with Hamming distance at most d from this k-mer. Given a k-mer
Pattern, we therefore define its d-neighborhood NEIGHBORS(Pattern, d) as the set of all
k-mers that are close to Pattern. For example, NEIGHBORS(ACG, 1) consists of ten 3-mers:

ACG CCG GCG TCG AAG AGG ATG ACA ACC ACT

EXERCISE BREAK: Estimate the size of NEIGHBORS(Pattern, d).

We will also use an array CLOSE of size 4k whose values we initialize to zero. In
the FREQUENTWORDSWITHMISMATCHES pseudocode below, we set CLOSE(i) = 1
whenever Pattern = NUMBERTOPATTERN(i, k) is close to some k-mer in Text. This
allows us to apply APPROXIMATEPATTERNCOUNT only to close k-mers, a smarter
approach than applying it to all k-mers.

CHARGING STATION (Generating the Neighborhood of a String):
FREQUENTWORDSWITHMISMATCHES also calls NEIGHBORS(Pattern, d), a
function that generates the d-neighborhood of a k-mer Pattern. Check out this
Charging Station to learn how to implement this function.
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STOP and Think: Although FREQUENTWORDSWITHMISMATCHES is faster
than the naive algorithm described in the main text for the typical parameters
used in oriC searches, it is not necessarily faster for all parameter values. For
which parameter values is FREQUENTWORDSWITHMISMATCHES slower than
the naive algorithm?
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FREQUENTWORDSWITHMISMATCHES(Text, k, d)
FrequentPatterns an empty set
for i 0 to 4k � 1

CLOSE(i) 0
FREQUENCYARRAY  0

for i 0 to |Text|� k
Neighborhood NEIGHBORS(Text(i, k), d)
for each Pattern from Neighborhood

index PATTERNTONUMBER(Pattern)
CLOSE(index) 1

for i 0 to 4k � 1
if CLOSE(i) = 1

Pattern NUMBERTOPATTERN(i, k)
FREQUENCYARRAY(i) APPROXIMATEPATTERNCOUNT(Text, Pattern, d)

maxCount maximal value in FREQUENCYARRAY

for i 0 to 4k � 1
if FREQUENCYARRAY(i) = maxCount

Pattern NUMBERTOPATTERN(i, k)
add Pattern to the set FrequentPatterns

return FrequentPatterns

CHARGING STATION (Finding Frequent Words with Mismatches by Sort-
ing): If you are familiar with sorting and are interested in seeing an even faster
algorithm for the Frequent Words with Mismatches Problem, check out this
Charging Station.

PAGE
51
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Generating the neighborhood of a string

Our goal is to generate the d-neighborhood NEIGHBORS(Pattern, d), the set of all k-mers
whose Hamming distance from Pattern does not exceed d. We will first generate the
1-neigborhood of Pattern using the following pseudocode.

IMMEDIATENEIGHBORS(Pattern)
Neighborhood the set consisting of the single string Pattern
for i = 1 to |Pattern|

symbol i-th nucleotide of Pattern
for each nucleotide x different from symbol

Neighbor Pattern with the i-th nucleotide substituted by x
add Neighbor to Neighborhood

return Neighborhood

Our idea for generating NEIGHBORS(Pattern, d) is as follows. If we remove the first
symbol of Pattern (denoted FIRSTSYMBOL(Pattern)), then we will obtain a (k� 1)-mer
that we denote by SUFFIX(Pattern).

STOP and Think: If we know NEIGHBORS(SUFFIX(Pattern), d), how does it help
us construct NEIGHBORS(Pattern, d)?

Now, consider a (k � 1)-mer Pattern’ belonging to NEIGHBORS(SUFFIX(Pattern), d).
By the definition of the d-neighborhood NEIGHBORS(SUFFIX(Pattern), d), we know
that HAMMINGDISTANCE(Pattern0, SUFFIX(Pattern)) is either equal to d or less than
d. In the first case, we can add FIRSTSYMBOL(Pattern) to the beginning of Pattern’
in order to obtain a k-mer belonging to NEIGHBORS(Pattern, d). In the second case,
we can add any symbol to the beginning of Pattern’ and obtain a k-mer belonging to
NEIGHBORS(Pattern, d).

In the following pseudocode for NEIGHBORS, we use the notation symbol • Text to
denote the concatenation of a character symbol and a string Text, e.g., A • GCATG =

AGCATG.
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NEIGHBORS(Pattern, d)
if d = 0

return {Pattern}
if |Pattern| = 1

return {A,C,G,T}
Neighborhood an empty set
SuffixNeighbors NEIGHBORS(SUFFIX(Pattern), d)
for each string Text from SuffixNeighbors

if HAMMINGDISTANCE(SUFFIX(Pattern), Text) < d
for each nucleotide x

add x • Text to Neighborhood

else
add FIRSTSYMBOL(Pattern) • Text to Neighborhood

return Neighborhood

1N

STOP and Think: Consider the following questions.

1. What is the running time of NEIGHBORS?

2. NEIGHBORS generates all k-mers of Hamming distance at most d from
Pattern. Modify NEIGHBORS to generate all k-mers of Hamming distance
exactly d from Pattern.

If you are still learning how recursive algorithms (like NEIGHBORS) work, you may
want to implement an iterative version of NEIGHBORS instead, shown below.

ITERATIVENEIGHBORS(Pattern, d)
Neighborhood set consisting of single string Pattern
for j = 1 to d

for each string Pattern’ in Neighborhood
add IMMEDIATENEIGHBORS(Pattern0) to Neighborhood
remove duplicates from Neighborhood

return Neighborhood
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Finding frequent words with mismatches by sorting

Note: This Charging Station uses some notation from CHARGING STATION: Finding
PAGE

43
Frequent Words by Sorting.

The following pseudocode reduces the Frequent Words with Mismatches Problem
to sorting.

FINDINGFREQUENTWORDSWITHMISMATCHESBYSORTING(Text, k, d)
FrequentPatterns an empty set
Neighborhoods an empty list
for i 0 to |Text|� k

add NEIGHBORS(Text(i, k), d) to Neighborhoods

form an array NEIGHBORHOODARRAY holding all strings in Neighborhoods
for i 0 to |Neighborhoods|� 1

Pattern NEIGHBORHOODARRAY(i)
INDEX(i) PATTERNTONUMBER(Pattern)
COUNT(i) 1

SORTEDINDEX  SORT(INDEX)

for i 0 to |Neighborhoods|� 1
if SORTEDINDEX(i) = SORTEDINDEX(i + 1)

COUNT(i + 1) COUNT(i) + 1

maxCount maximum value in array COUNT

for i 0 to |Neighborhoods|� 1
if COUNT(i) = maxCount

Pattern NUMBERTOPATTERN(SORTEDINDEX(i), k)
add Pattern to FrequentPatterns

return FrequentPatterns

51



C H A P T E R 1

Detours

Big-O notation

Computer scientists typically measure an algorithm’s efficiency in terms of its worst-
case running time, which is the largest amount of time an algorithm can take for the
most difficult input of a given size. The advantage to considering the worst-case running
time is that we are guaranteed that our algorithm will never behave worse than our
worst-case estimate.

Big-O notation compactly describes the running time of an algorithm. For example,
if your algorithm for sorting an array of n numbers takes roughly n2 operations for the
most difficult dataset, then we say that the running time of your algorithm is O�

n2�.
In reality, depending on your implementation, it may use any number of operations,
such as 1.5n2, n2 + n + 2, or 0.5n2 + 1; all these algorithms are O�

n2� because big-O
notation only cares about the term that grows the fastest with respect to the size of the
input. This is because as n grows very large, the difference in behavior between two
O�

n2� functions, like 999 · n2 and n2 + 3n + 9999999, is negligible when compared to
the behavior of functions from different classes, say O�

n2� and O�
n6�. Of course, we

would prefer an algorithm requiring 1/2 · n2 steps to an algorithm requiring 1000 · n2

steps.
When we write that the running time of an algorithm is O�

n2�, we technically
mean that it does not grow faster than a function with a leading term of c · n2, for
some constant c. Formally, a function f (n) is Big-O of function g(n), or O(g(n)), when
f (n)  c · g(n) for some constant c and sufficiently large n.

Probabilities of patterns in a string

We mentioned that the probability that some 9-mer appears 3 or more times in a random
DNA string of length 500 is approximately 1/1300. We assure you that this calculation
does not appear out of thin air. Specifically, we can generate a random string modeling
a DNA strand by choosing each nucleotide for any position with probability 1/4. The
construction of random strings can be generalized to an arbitrary alphabet with A
symbols, where each symbol is chosen with probability 1/A.

EXERCISE BREAK: What is the probability that two randomly generated strings
of length n in an A-letter alphabet are identical?

We now ask a simple question: what is the probability that a specific k-mer Pattern
will appear (at least once) as a substring of a random string of length N? For example,
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say that we want to find the probability that "01" appears in a random binary string
(A = 2) of length 4. Here are all possible such strings.

0000 0001 0010 0011 0100 0101 0110 0111

1000 1001 1010 1011 1100 1101 1110 1111

Because "01" is a substring of 11 of these 4-mers, and because each 4-mer could be
generated with probability 1/16, the probability that "01" appears in a random binary
4-mer is 11/16.

STOP and Think: What is the probability that Pattern = "11" appears as a sub-
string of a random binary 4-mer?

Surprisingly, changing Pattern from "01" to "11" changes the probability that it appears
as a substring of a random binary string. Indeed, "11" appears in only 8 binary 4-mers:

0000 0001 0010 0011 0100 0101 0110 0111

1000 1001 1010 1011 1100 1101 1110 1111

As a result, the probability of "11" appearing in a random binary string of length 4 is
8/16 = 1/2.

STOP and Think: Why do you think that "11" is less likely than "01" to appear
as a substring of a random binary 4-mer?

Let Pr(N, A, Pattern, t) denote the probability that a string Pattern appears t or more
times in a random string of length N formed from an alphabet of A letters. We saw that
Pr(4, 2, "01", 1) = 11/16 while Pr(4, 2, "11", 1) = 1/2. Interestingly, when we make t
greater than 1, we see that "01" is less likely to appear multiple times than "11". For
example, the probability of finding "01" twice or more in a random binary 4-mer is
given by Pr(4, 2, "01", 2) = 1/16 because "0101" is the only binary 4-mer containing
"01" twice, and yet Pr(4, 2, "11", 2) = 3/16 because binary 4-mers "0111", "1110" and
"1111" all have at least two occurrences of "11".

EXERCISE BREAK: Compute Pr(100, 2, "01", 1).

We have seen that different k-mers have different probabilities of occurring multiple
times as a substring of a random string. In general, this phenomenon is called the
overlapping words paradox because different substring occurrences of Pattern can
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overlap each other for some choices of Pattern but not others (see DETOUR: ThePAGE 62
Overlapping Words Paradox).

For example, there are two overlapping occurrences of "11" in "1110", and three
overlapping occurrences of "11" in "1111"; yet occurrences of "01" can never overlap
with each other, and so "01" can never occur more than twice in a binary 4-mer. The
overlapping words paradox makes computing Pr(N, A, Pattern, t) a rather complex
problem because this probability depends heavily on the particular choice of Pattern. In
light of the complications presented by the overlapping words paradox, we will try to
approximate Pr(A, N, Pattern, t) rather than compute it exactly.

To approximate Pr(N, A, Pattern, t), we will assume that the k-mer Pattern is not
overlapping. As a toy example, say we we wish to count the number of ternary strings
(A = 3) of length 7 that contain "01" at least twice. Apart from the two occurrences of
"01", we have three remaining symbols in the string. Let’s assume that these symbols
are all "2". The two occurrences of "01" can be inserted into "222" in ten different ways
to form a 7-mer, as shown below.

0101222 0120122 0122012 0122201 2010122

2012012 2012201 2201012 2201201 2220101

We inserted these two occurrences of "01" into "222", but we could have inserted
them into any other ternary 3-mer. Because there are 33 = 27 ternary 3-mers, we obtain
an approximation of 10 · 27 = 270 for the number of ternary 7-mers that contain two or
more instances of "01". Because there are 37 = 2187 ternary 7-mers, we estimate the
probability Pr(7, 3, "01", 2) as 270/2187.

STOP and Think: Is 270/2187 a good approximation for Pr(7, 3, "01", 2)? Is the
true probability Pr(7, 3, "01", 2) larger or smaller than 270/2187?

To generalize the above method to approximate Pr(N, A, Pattern, t) for arbitrary param-
eter values, consider a string Text of length N having at least t occurrences of a k-mer
Pattern. If we select exactly t of these occurrences, then we can think about Text as a
sequence of n = N � t · k symbols interrupted by t insertions of the k-mer Pattern. If we
fix these n symbols, then we wish to count the number of different strings Text that can
be formed by inserting t occurrences of Pattern into a string formed by these n symbols.

For example, consider again the problem of embedding two occurrences of "01"
into "222" (n = 3), and note that we have added five copies of a capital "X" below each
7-mer.
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0101222 0120122 0122012 0122201 2010122
X X XXX X XX XX X XXX X X XXXX XX X XX

2012012 2012201 2201012 2201201 2220101
XX XX X XX XXX XXX X X XXX XX XXXX X

What do the "X" mean? Instead of counting the number of ways to insert two occur-
rences of "01" into "222", we can count the number of ways to select two of the five
"X" to color blue.

XXXXX XXXXX XXXXX XXXXX XXXXX

XXXXX XXXXX XXXXX XXXXX XXXXX

In other words, we are counting the number of ways to choose 2 out of 5 objects, which
can be counted by the binomial coefficient (5

2) = 10. More generally, the binomial
coefficient (m

k ) represents the number of ways to choose k out of m objects and is equal
to m!

�
k!(m� k)!

STOP and Think: How many ways are there to implant t instances of a (nonover-
lapping) k-mer into a string of length n to produce a string of length n + t · k?

To approximate Pr(N, A, Pattern, t), we want to count the number of ways to insert t
instances of a k-mer Pattern into a fixed string of length n = N � t · k. We will therefore
have n + t occurrences of "X", from which we must select t for the placements of Pattern,
giving a total of (n+t

t ). We then need to multiply (n+t
t ) by the number of strings of

length n into which we can insert t instances of Pattern to have an approximate total of
(n+t

t ) · An (the actual number will be smaller because of over-counting). Dividing by
the number of strings of length N, we have our desired approximation,

Pr(N, A, Pattern, t) ⇡ (n+t
t ) · An

AN =
(N�t·(k�1)

t )

At·k .

We will now compute the probability that the specific 5-mer ACTAT occurs at least
t = 3 times in a random DNA string (A = 4) of length N = 30. Since n = N� t · k = 15,
our estimated probability is

Pr(30, 4,ACTAT, 3) ⇡ (30�3·4
3 )

415 =
816

1073741824
⇡ 7.599 · 10�7 .

The exact probability is closer to 7.572 · 10�7, illustrating that our approximation is
relatively accurate for non-overlapping patterns. However, it becomes inaccurate for
overlapping patterns, e.g., Pr(30, 4,AAAAA, 3) ⇡ 1.148 · 10�3.
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We should not be surprised that the probability of finding ACTAT in a random
DNA string of length 30 is so low. However, remember that our original goal was to
approximate the probability that there exists some 5-mer appearing three or more times.
In general, the probability that some k-mer appears t or more times in a random string
of length N formed over an A-letter alphabet is written Pr(N, A, k, t).

We approximated Pr(N, A, Pattern, t) as

p =
(N�t·(k�1)

t )

At·k .

Notice that the approximate probability that Pattern does not appear t or more times is
therefore 1� p. Thus, the probability that all Ak patterns appear fewer than t times in a
random string of length N can be approximated as

(1� p)Ak .

Moreover, the probability that there exists a k-mer appearing t or more times should be
1 minus this value, which gives us the following approximation:

Pr(N, A, k, t) ⇡ 1� (1� p)Ak .

Your calculator may have difficulty with this formula, which requires raising a
number close to 1 to a very large power and can cause round-off errors. To avoid
this, if we assume that p is about the same for any Pattern, then we can approximate
Pr(N, A, k, t) by multiplying p by the total number of k-mers Ak,

Pr(N, A, k, t) ⇡ p · Ak =
(N�t·(k�1)

t )

At·k · Ak =
(N�t·(k�1)

t )

A(t�1)·k .

We acknowledge again that this approximation is a gross over-simplification, since the
probability Pr(N, A, Pattern, t) varies across different choices of k-mers and because it
assumes that occurrences of different k-mers are independent events. For example, in
the main text, we wish to approximate Pr(500, 4, 9, 3), and the above formula results in
the approximation

Pr(500, 4, 9, 3) ⇡ (500�3·8
3 )

4(3�1)·9 =
17861900

68719476736
⇡ 1

3847
.

Because of overlapping strings, this approximation deviates from the true value of
Pr(500, 4, 9, 3), which is closer to 1/1300.
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The most beautiful experiment in biology

The Meselson-Stahl experiment, conducted in 1958 by Matthew Meselson and Franklin
Stahl, is sometimes called “the most beautiful experiment in biology”. In the late 1950s,
biologists debated three conflicting models of DNA replication, illustrated in Figure 1.24.
The semiconservative hypothesis (recall Figure 1.1 from page 3), suggested that each
parent strand acts as a template for the synthesis of a daughter strand. As a result, each
of the two daughter molecules contains one parent strand and one newly synthesized
strand. The conservative hypothesis proposed that the entire double-stranded parent
DNA molecule serves as a template for the synthesis of a new daughter molecule, result-
ing in one molecule with two parent strands and another with two newly synthesized
strands. The dispersive hypothesis proposed that some mechanism breaks the DNA
backbone into pieces and splices intervals of synthesized DNA, so that each of the
daughter molecules is a patchwork of old and new double-stranded DNA.

Semiconservative Conservative Dispersive 

Parental 
DNA 

After 1 round 
of replication 

After 2 rounds 
of replication 

FIGURE 1.24 Semiconservative, conservative, and dispersive models of DNA replication
make different predictions about the distribution of DNA strands after replication. Yellow
strands indicate 15N (heavy) segments of DNA, and black strands indicate 14N (light)
segments. The Meselson-Stahl experiment began with DNA consisting of 100% 15N.

Meselson and Stahl’s insight was that one isotope of nitrogen, Nitrogen-14 (14N),
is lighter and more abundant than Nitrogen-15 (15N). Knowing that DNA naturally
contains 14N , Meselson and Stahl grew E. coli for many rounds of replication in a 15N
medium, which caused the bacteria to gain weight as they absorbed the heavier isotope
into their DNA. When they were confident that the bacterial DNA was saturated with
15N, they transferred the heavy E. coli cells to a less dense 14N medium.
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STOP and Think: What do you think happened when the “heavy” E. coli repli-
cated in the “light” 14N medium?

The brilliance of the Meselson-Stahl experiment is that all newly synthesized DNA
would contain exclusively 14N, and the three existing hypotheses for DNA replication
predicted different outcomes for how this 14N isotope would be incorporated into DNA.
Specifically, after one round of replication, the conservative model predicted that half
the E. coli DNA would still have only 15N and therefore be heavier whereas the other
half would have only 14N and be lighter. Yet when they attempted to separate the E. coli
DNA according to weight by using a centrifuge after one round of replication, all of the
DNA had the same density! Just like that, they had refuted the conservative hypothesis
once and for all.

Unfortunately, this experiment was not able to eliminate either of the other two
models, as both the dispersive and semiconservative hypotheses predicted that all of
the DNA after one round of replication would have the same density.

STOP and Think: What would the dispersive and semiconservative models
predict about the density of E. coli DNA after two rounds of replication?

Let’s first consider the dispersive model, which says that each daughter strand of DNA
is formed by half mashed up pieces of the parent strand, and half new DNA. If this
hypothesis were true, then after two replication cycles, any daughter strand of DNA
should contain about 25% 15N and about 75% 14N. In other words, all the DNA should
still have the same density. And yet when Meselson and Stahl spun the centrifuge after
two rounds of E. coli replication, this is not what they observed!

Instead, they found that the DNA divided into two different densities. This is exactly
what the semiconservative model predicted: after one cycle, every cell should possess
one 14N strand and one 15N strand; after two cycles, half of the DNA molecules should
have one 14N strand and one 15N strand, while the other half should have two 14N
strands, producing the two different densities they noticed.

STOP and Think: What does the semi-conservative model predict about the
density of E. coli DNA after three rounds of replication?

Meselson and Stahl had rejected the conservative and dispersive hypotheses of repli-
cation, and yet they wanted to make sure that the semiconservative hypothesis was
confirmed by further E. coli replication. This model predicted that after three rounds of
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replication, one-quarter of the DNA molecules should still have a 15N strand, causing
25% of the DNA to have an intermediate density, whereas the remaining 75% should be
lighter, having only 14N. This is indeed what Meselson and Stahl witnessed in the lab,
and the semiconservative hypothesis has stood strong to this day.

Directionality of DNA strands

The sugar component of a nucleotide has a ring of five carbon atoms, which are labeled
as 10, 20, 30, 40, and 50 in Figure 1.25 (left). The 50 atom is joined onto the phosphate
group in the nucleotide and eventually to the 30 end of the neighboring nucleotide. The
30 atom is joined onto another neighboring nucleotide in the nucleic acid chain. As a
result, we call the two ends of the nucleotide the 5’-end and the 3’-end (pronounced
“five prime end” and "three prime end”, respectively).

Base 

H OH 

OH 

O 

O 

O 
O 

P 

4’ 

5’ 

3’ 2’ 

1’ 

FIGURE 1.25 A nucleotide with sugar ring carbon atoms labeled 1’, 2’, 3’, 4’, and 5’.

When we zoom out to the level of the double helix, we can see in Figure 1.25 (right)
that any DNA fragment is oriented with a 30 atom on one end and a 50 atom on the
other end. As a standard, a DNA strand is always read in the 50 ! 30 direction. Note
that the orientations run opposite to each other in complementary strands.
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The Towers of Hanoi

The Towers of Hanoi puzzle consists of three vertical pegs and a number of disks of
different sizes, each with a hole in its center so that it fits on the pegs. The disks are
initially stacked on the left peg (peg 1) so that disks increase in size from the top down
(Figure 1.26). The puzzle is played by moving one disk at a time between pegs, with the
goal of moving all disks from the left peg (peg 1) to the right peg (peg 3). However, you
are not allowed to place a disk on top of a smaller disk.

FIGURE 1.26 The Towers of Hanoi puzzle.

Towers of Hanoi Problem:
Solve the Towers of Hanoi puzzle.

Input: An integer n.
Output: A sequence of moves that will solve the Towers of Hanoi puzzle
with n disks.

STOP and Think: What is the minimum number of steps needed to solve the
Towers of Hanoi Problem for three disks?

Let’s see how many steps are required to solve the Towers of Hanoi Problem for four
disks. The first important observation is that sooner or later you will have to move the
largest disk to the right peg. However, in order to move the largest disk, we first have
to move all three smallest disks off the first peg. Furthermore, these three smallest disks
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must all be on the same peg because the largest disk cannot be placed on top of another
disk. Thus, we first have to move the top three disks to the middle peg (7 moves), then
move the largest disk to the right peg (1 move), then again move the three smallest
disks from the middle peg to the top of the largest disk on the right peg (another 7
moves), for a total of 15 moves.

More generally, let T(n) denote the minimum number of steps required to solve the
Towers of Hanoi puzzle with n disks. To move n disks from the left peg to the right
peg, you first need to move the n� 1 smallest disks from the left peg to the middle peg
(T(n� 1) steps), then move the largest disk to the right peg (1 step), and finally move
the n� 1 smallest disks from the middle peg to the right peg (T(n� 1) steps). This
yields the recurrence relation

T(n) = 2T(n� 1) + 1 .

STOP and Think: Using the above recurrence relation, can you find a formula
for T(n) that does not require recursion?

We now have a recursive algorithm to move n disks from the left peg to the right peg.
We will use three variables (each taking a different value from 1, 2, and 3) to denote
the three pegs: startPeg, destinationPeg, and transitPeg. These three variables always
represent different pegs, and so startPeg + destinationPeg + transitPeg is always equal to
1 + 2 + 3 = 6. HANOITOWERS(n, startPeg, destinationPeg) moves n disks from startPeg
to destinationPeg (using transitPeg as a temporary destination).

HANOITOWERS(n, startPeg, destinationPeg)
if n = 1

Move top disk from startPeg to destinationPeg
return

transitPeg = 6� startPeg� destinationPeg
HANOITOWERS(n� 1, startPeg, transitPeg)
Move top disk from startPeg to destinationPeg
HANOITOWERS(n� 1, transitPeg, destinationPeg)
return

Even though this algorithm may seem straightforward, moving a 100-disk tower would
require more steps than the number of atoms in the universe! The fast growth of the
number of moves required by HANOITOWERS is explained by the fact that every time
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HANOITOWERS is called for n disks, it calls itself twice for n� 1, which in turn trig-
gers four calls for n � 2, and so on. For example, a call to HANOITOWERS(4, 1, 3)
results in calls HANOITOWERS(3, 1, 2) and HANOITOWERS(3, 2, 3); these calls, in
turn, call HANOITOWERS(2, 1, 3), HANOITOWERS(2, 3, 2), HANOITOWERS(2, 2, 1),
and HANOITOWERS(2, 1, 3).

The overlapping words paradox

We illustrate the overlapping words paradox with a two-player game called “Best Bet
for Simpletons”. Player 1 selects a binary k-mer A, and Player 2, knowing what A is,
selects a different binary k-mer B. The two players then flip a coin multiple times, with
coin flips represented by strings of "1" (“heads”) and "0" (“tails”); the game ends when
A or B appears as a block of k consecutive coin flips.

STOP and Think: Do the two players always have the same chance of winning?

At first glance, you might guess that every k-mer has an equal chance of winning. Yet
suppose that Player 1 chooses "00" and Player 2 chooses "10". After two flips, either
Player 1 wins ("00"), Player 2 wins ("10"), or the game continues ("01" or "11"). If
the game continues, then Player 1 should surrender, since Player 2 will win as soon as
“tails” ("0") is next flipped. Player 2 is therefore three times more likely to win!

It may seem that Player 1 should have the advantage by simply selecting the
“strongest” k-mer. However, an intriguing feature of Best Bet for Simpletons is that if
k > 2, then Player 2 can always choose a k-mer B that beats A, regardless of Player 1’s
choice of A. Another surprise is that Best Bet for Simpletons is a non-transitive game:
if A defeats B, and B defeats C, then we cannot automatically conclude that A defeats C
(c.f. rock-paper-scissors).

The analysis of Best Bet for Simpletons is based on the notion of a correlation
polynomial. We say that B i-overlaps with A if the last i digits of A coincide with the
first i digits of B. For example, "110110" 1-overlaps, 2-overlaps, and 5-overlaps with
"011011", as shown in Figure 1.27.

Given two k-mers A and B, the correlation of A and B, denoted CORR(A, B) =

(c0, . . . , ck�1), is a k-letter binary word such that ci = 1 if B (k� i)-overlaps with A, and
0 otherwise. The correlation polynomial of A and B is defined as

KA,B(t) = c0 + c1 · t + c2 · t2 + · · ·+ ck�1 · tk�1 .
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CORR(A,B)
B = 110110 0
B = 110110 1
B = 110110 0
B = 110110 0
B = 110110 1
B = 110110 1
A = 011011

FIGURE 1.27 The correlation of k-mers A = "011011" and B = "110110" is the string
"010011".

For the strings A and B in Figure 1.27, their correlation is "010011" and their correlation
polynomial is KA,B(t) = t + t4 + t5.

Next, we write KA,B as shorthand for KA,B(1/2). For the example in Figure 1.27,
KA,B = 1

2 + 1
16 + 1

32 = 19
32 . John Conway suggested the following deceivingly simple

formula to compute the odds that B will defeat A:

KA,A � KA,B
KB,B � KB,A

Conway never published a proof of this formula, and Martin Gardner, a leading popular
mathematics writer, said the following about the formula:

I have no idea why it works. It just cranks out the answer as if by magic, like so
many of Conway’s other algorithms.
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Do We Have a “Clock” Gene?

The daily schedules of animals, plants, and even bacteria are controlled by an internal
timekeeper called the circadian clock. Anyone who has experienced the misery of jet
lag knows that this clock never stops ticking. Rats and research volunteers alike, when
placed in a bunker, naturally maintain a roughly 24-hour cycle of activity and rest in
total darkness. And, like any timepiece, the circadian clock can malfunction, resulting
in a genetic disease known as delayed sleep-phase syndrome (DSPS).

The circadian clock must have some basis on the molecular level, which presents
many questions. How do individual cells in animals and plants (let alone bacteria) know
when they should slow down or increase the production of certain proteins? Is there
a “clock gene”? Can we explain why heart attacks occur more often in the morning,
while asthma attacks are more common at night? And can we identify genes that are
responsible for “breaking” the circadian clock to cause DSPS?

In the early 1970s, Ron Konopka and Seymour Benzer identified mutant flies with
abnormal circadian patterns and traced the flies’ mutations to a single gene. Biologists
needed two more decades to discover a similar clock gene in mammals, which was just
the first piece of the puzzle. Today, many more circadian genes have been discovered;
these genes, having names like timeless, clock, and cycle, orchestrate the behavior of
hundreds of other genes and display a high degree of evolutionary conservation across
species.

We will first focus on plants, since maintaining the circadian clock in plants is a
matter of life and death. Consider how many plant genes should pay attention to the
time when the sun rises and sets; indeed, biologists estimate that over a thousand plant
genes are circadian, including the genes related to photosynthesis, photo reception, and
flowering. These genes must somehow know what time it is in order to change their
gene transcript production, or gene expression, throughout the day (see DETOUR: PAGEPAGE 108108
Gene Expression).

It turns out that every plant cell keeps track of day and night independently of other
cells, and that just three plant genes, called LCY, CCA1, and TOC1, are the clock’s master
timekeepers. Such regulatory genes, and the regulatory proteins that they encode, are
often controlled by external factors (e.g., nutrient availability or sunlight) in order to
allow organisms to adjust their gene expression.

For example, regulatory proteins controlling the circadian clock in plants coordinate
circadian activity as follows. TOC1 promotes the expression of LCY and CCA1, whereas
LCY and CCA1 repress the expression of TOC1, resulting in a negative feedback loop.
In the morning, sunlight activates the transcription of LCY and CCA1, triggering the
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repression of TOC1 transcription. As light diminishes, so does the production of LCY
and CCA1, which in turn do not repress TOC1 any more. Transcription of TOC1 peaks
at night and starts promoting the transcription of LCY and CCA1, which in turn repress
the transcription of TOC1, and the cycle begins again.

LCY, CCA1, and TOC1 are able to control the transcription of other genes because
the regulatory proteins that they encode are transcription factors, or master regulatory
proteins that turn other genes on and off. A transcription factor regulates a gene by bind-
ing to a specific short DNA interval called a regulatory motif, or transcription factor
binding site, in the gene’s upstream region, a 600-1000 nucleotide-long region preced-
ing the start of the gene. For example, CCA1 binds to AAAAAATCT in the upstream
region of many genes regulated by CCA1.

The life of a bioinformatician would be easy if regulatory motifs were completely
conserved, but the reality is more complex, as regulatory motifs may vary at some
positions, e.g., CCA1 may instead bind to AAGAACTCT. But how can we locate these
regulatory motifs without knowing what they look like in advance? We need to develop
algorithms for motif finding, the problem of discovering a “hidden message” shared
by a collection of strings.

Motif Finding Is More Difficult Than You Think

Identifying the evening element

In 2000, Steve Kay used DNA arrays (see DETOUR: DNA Arrays) to determine whichPAGE 108
genes in the plant Arabidopsis thaliana are activated at different times of the day. He then
extracted the upstream regions of nearly 500 genes that exhibited circadian behavior
and looked for frequently appearing patterns in their upstream regions. If you concate-
nated these upstream regions into a single string, you would find that AAAATATCT is a
surprisingly frequent word, appearing 46 times.

EXERCISE BREAK: What is the expected number of occurrences of a 9-mer in
500 random DNA strings, each of length 1000?

Kay named AAAATATCT the evening element and performed a simple experiment to
prove that it is indeed the regulatory motif responsible for circadian gene expression in
Arabidopsis thaliana. After he mutated the evening element in the upstream region of
one gene, the gene no longer exhibited circadian behavior.
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Whereas the evening element in plants is very conserved, and thus easy to find,
motifs having many mutations are more elusive. For example, if you infect a fly with
a bacterium, the fly will switch on its immunity genes to fight the infection. Thus,
some of the genes with elevated expression levels after the infection are likely to be
immunity genes. Indeed, some of these genes have 12-mers similar to TCGGGGATTTCC
in their upstream regions, the binding site of a transcription factor called NF-kB that
activates various immunity genes in flies. However, NF-kB binding sites are nowhere
near as conserved as the evening element. Figure 2.1 shows ten NF-kB binding sites
from the Drosophila melanogaster genome; the most popular nucleotides in every column
are shown by upper case colored letters.

1 T C G G G G g T T T t t
2 c C G G t G A c T T a C
3 a C G G G G A T T T t C
4 T t G G G G A c T T t t
5 a a G G G G A c T T C C
6 T t G G G G A c T T C C
7 T C G G G G A T T c a t
8 T C G G G G A T T c C t
9 T a G G G G A a c T a C

10 T C G G G t A T a a C C

FIGURE 2.1 The ten candidate NF-kB binding sites appearing in the Drosophila
melanogaster genome. The upper case colored letters indicate the most frequent
nucleotide in each column.

Hide and seek with motifs

Our aim is to turn the biological challenge of finding regulatory motifs into a compu-
tational problem. Below, we have implanted a 15-mer hidden message at a randomly
selected position in each of ten randomly generated DNA strings. This example mimics
a transcription factor binding site hiding in the upstream regions of ten genes.

1 atgaccgggatactgataaaaaaaagggggggggcgtacacattagataaacgtatgaagtacgttagactcggcgccgccg
2 acccctattttttgagcagatttagtgacctggaaaaaaaatttgagtacaaaacttttccgaataaaaaaaaaggggggga
3 tgagtatccctgggatgacttaaaaaaaagggggggtgctctcccgatttttgaatatgtaggatcattcgccagggtccga
4 gctgagaattggatgaaaaaaaagggggggtccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggaga
5 tcccttttgcggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaataaaaaaaagggggggcttatag
6 gtcaatcatgttcttgtgaatggatttaaaaaaaaggggggggaccgcttggcgcacccaaattcagtgtgggcgagcgcaa
7 cggttttggcccttgttagaggcccccgtaaaaaaaagggggggcaattatgagagagctaatctatcgcgtgcgtgttcat
8 aacttgagttaaaaaaaagggggggctggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgta
9 ttggcccattggctaaaagcccaacttgacaaatggaagatagaatccttgcataaaaaaaagggggggaccgaaagggaag

10 ctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagcttaaaaaaaaggggggga
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STOP and Think: Can you find the implanted hidden message?

This is a simple problem: applying an algorithm for the Frequent Words Problem to the
concatenation of these strings will immediately reveal the most frequent 15-mer shown
below as the implanted pattern. Since these short strings were randomly generated, it
is unlikely that they contain other frequent 15-mers.

1 atgaccgggatactgatAAAAAAAAGGGGGGGggcgtacacattagataaacgtatgaagtacgttagactcggcgccgccg
2 acccctattttttgagcagatttagtgacctggaaaaaaaatttgagtacaaaacttttccgaataAAAAAAAAGGGGGGGa
3 tgagtatccctgggatgacttAAAAAAAAGGGGGGGtgctctcccgatttttgaatatgtaggatcattcgccagggtccga
4 gctgagaattggatgAAAAAAAAGGGGGGGtccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggaga
5 tcccttttgcggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaatAAAAAAAAGGGGGGGcttatag
6 gtcaatcatgttcttgtgaatggatttAAAAAAAAGGGGGGGgaccgcttggcgcacccaaattcagtgtgggcgagcgcaa
7 cggttttggcccttgttagaggcccccgtAAAAAAAAGGGGGGGcaattatgagagagctaatctatcgcgtgcgtgttcat
8 aacttgagttAAAAAAAAGGGGGGGctggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgta
9 ttggcccattggctaaaagcccaacttgacaaatggaagatagaatccttgcatAAAAAAAAGGGGGGGaccgaaagggaag

10 ctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagcttAAAAAAAAGGGGGGGa

Now imagine that instead of implanting exactly the same pattern into all sequences,
we mutate the pattern before inserting it into each sequence by randomly changing
the nucleotides at four randomly selected positions within each implanted 15-mer, as
shown below.

1 atgaccgggatactgatAgAAgAAAGGttGGGggcgtacacattagataaacgtatgaagtacgttagactcggcgccgccg
2 acccctattttttgagcagatttagtgacctggaaaaaaaatttgagtacaaaacttttccgaatacAAtAAAAcGGcGGGa
3 tgagtatccctgggatgacttAAAAtAAtGGaGtGGtgctctcccgatttttgaatatgtaggatcattcgccagggtccga
4 gctgagaattggatgcAAAAAAAGGGattGtccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggaga
5 tcccttttgcggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaatAtAAtAAAGGaaGGGcttatag
6 gtcaatcatgttcttgtgaatggatttAAcAAtAAGGGctGGgaccgcttggcgcacccaaattcagtgtgggcgagcgcaa
7 cggttttggcccttgttagaggcccccgtAtAAAcAAGGaGGGccaattatgagagagctaatctatcgcgtgcgtgttcat
8 aacttgagttAAAAAAtAGGGaGccctggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgta
9 ttggcccattggctaaaagcccaacttgacaaatggaagatagaatccttgcatActAAAAAGGaGcGGaccgaaagggaag

10 ctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagcttActAAAAAGGaGcGGa

The Frequent Words Problem is not going to help us, since AAAAAAAAGGGGGGG does
not even appear in the sequences above. Perhaps, then, we could apply our solution to
the Frequent Words with Mismatches Problem. However, in Chapter 1, we implemented
an algorithm for the Frequent Words with Mismatches Problem aimed at finding hidden
messages with a small number of mismatches and a small k-mer size (e.g., one or two
mismatches for DnaA boxes of length 9). This algorithm will become too slow when
searching for the implanted motif above, which is longer and has more mutations.

Furthermore, concatenating all the sequences into a single string is inadequate
because it does not correctly model the biological problem of motif finding. A DnaA
box is a pattern that clumps, or appears frequently, within a relatively short interval
of the genome. In contrast, a regulatory motif is a pattern that appears at least once
(perhaps with variation) in each of many different regions that are scattered throughout
the genome.

70



W H I C H D N A PAT T E R N S P L AY T H E R O L E O F M O L E C U L A R C L O C K S ?

A brute force algorithm for motif finding

Given a collection of strings Dna and an integer d, a k-mer is a (k, d)-motif if it appears
in every string from Dna with at most d mismatches. For example, the implanted 15-mer
in the strings above represents a (15, 4)-motif.

Implanted Motif Problem:
Find all (k, d)-motifs in a collection of strings.

Input: A collection of strings Dna, and integers k and d.
Output: All (k, d)-motifs in Dna.

Brute force search (also known as exhaustive search) is a general problem-solving tech-
nique that explores all possible candidate solutions and checks whether each candidate
solves the problem. Such algorithms require little effort to design and are guaranteed to
produce a correct solution, but they may take an enormous amount of time, and the
number of candidates may be too large to check.

A brute force approach for solving the Implanted Motif Problem is based on the
observation that any (k, d)-motif must be at most d mismatches apart from some k-mer
appearing in one of the strings of Dna. Therefore, we can generate all such k-mers and
then check which of them are (k, d)-motifs. If you have forgotten how to generate these
k-mers, recall CHARGING STATION: Generating the Neighborhood of a String.

PAGE
49MOTIFENUMERATION(Dna, k, d)

Patterns an empty set
for each k-mer Pattern in Dna

for each k-mer Pattern’ differing from Pattern by at most d mismatches
if Pattern’ appears in each string from Dna with at most d mismatches

add Pattern’ to Patterns
remove duplicates from Patterns
return Patterns

2A

MOTIFENUMERATION is unfortunately rather slow for large values of k and d, and so
we will try a different approach instead. Maybe we can detect an implanted pattern sim-
ply by identifying the two most similar k-mers between each pair of strings in Dna? How-
ever, consider the implanted 15-mers AgAAgAAAGGttGGG and cAAtAAAAcGGGGcG,
each of which differs from AAAAAAAAGGGGGGG by four mismatches. Although these
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15-mers look similar to the correct motif AAAAAAAAGGGGGGG, they are not so similar
when compared to each other, having eight mismatches:

AgAAgAAAGGttGGG
|| || | || |
cAAttAAAAcGGGGcG

Since these two implanted patterns are so different, we should be concerned whether
we will be able to find them by searching for the most similar k-mers among pairs of
strings in Dna.

In the rest of the chapter, we will benchmark our motif finding algorithms by using
a particularly challenging instance of the Implanted Motif Problem. The Subtle Motif
Problem refers to implanting a 15-mer with four random mutations in ten randomly
generated 600 nucleotide-long strings (the typical length of many upstream regulatory
regions). The instance of the Subtle Motif Problem that we will use has the implanted
15-mer AAAAAAAAGGGGGGG.

It turns out that thousands of pairs of randomly occurring 15-mers in our dataset for
the Subtle Motif Problem are fewer than 8 nucleotides apart from each other, preventing
us from identifying the true implanted motifs by pairwise comparisons.

Scoring Motifs

From motifs to profile matrices and consensus strings

Although the Implanted Motif Problem offers a useful abstraction of the biological
problem of motif finding, it has some limitations. For example, when Steve Kay used
a DNA array to infer the set of circadian genes in plants, he did not expect that all
genes in the resulting set would have the evening element (or its variants) in their
upstream regions. Similarly, biologists do not expect that all genes with an elevated
expression level in infected flies must be regulated by NF-kB. DNA array experiments
are inherently noisy, and some genes identified by these experiments have nothing to
do with the circadian clock in plants or immunity genes in flies. For such noisy datasets,
any algorithm for the Implanted Motif Problem would fail, because as long as a single
sequence does not contain the transcription factor binding site, a (k, d)-motif does not
exist!

A more appropriate problem formulation would score individual instances of motifs
depending on how similar they are to an “ideal” motif (i.e., a transcription factor
binding site that binds the best to the transcription factor). However, since the ideal
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motif is unknown, we attempt to select a k-mer from each string and score these k-mers
depending on how similar they are to each other.

To define scoring, consider t DNA strings, each of length n, and select a k-mer from
each string to form a collection Motifs, which we represent as a t⇥ k motif matrix. In
Figure 2.2, which shows the motif matrix for the NF-kB binding sites from Figure 2.1, we
indicate the most frequent nucleotide in each column of the motif matrix by upper case
letters. If there are multiple most popular nucleotides in a column, then we arbitrarily
select one of them to break the tie. Note that positions 2 and 3 are the most conserved
(nucleotide G is completely conserved in these positions), whereas position 10 is the
least conserved.

By varying the choice of k-mers in each string, we can construct a large number
of different motif matrices from a given sample of DNA strings. Our goal is to select
k-mers resulting in the most “conserved” motif matrix, meaning the matrix with the
most upper case letters (and thus the fewest number of lower case letters). Leaving
aside the question of how we select such k-mers, we will first focus on how to score the
resulting motif matrices, defining SCORE(Motifs) as the number of unpopular (lower
case) letters in the motif matrix Motifs. Our goal is to find a collection of k-mers that
minimizes this score.

EXERCISE BREAK: The minimum possible value of SCORE(Motifs) is 0 (if all
rows in the t⇥ k matrix Motifs are the same). What is the maximum possible
value of SCORE(Motifs) in terms of t and k?

We can construct the 4⇥ k count matrix COUNT(Motifs) counting the number of oc-
currences of each nucleotide in each column of the motif matrix; the (i, j)-th element
of COUNT(Motifs) stores the number of times that nucleotide i appears in column j of
Motifs. We will further divide all of the elements in the count matrix by t, the number
of rows in Motifs. This results in a profile matrix P = PROFILE(Motifs) for which Pi,j is
the frequency of the i-th nucleotide in the j-th column of the motif matrix. Note that the
elements of any column of the profile matrix sum to 1.

Finally, we form a consensus string, denoted CONSENSUS(Motifs), from the most
popular nucleotides in each column of the motif matrix (ties are broken arbitrarily). If we
select Motifs correctly from the collection of upstream regions, then CONSENSUS(Motifs)
provides an ideal candidate regulatory motif for these regions. For example, the consen-
sus string for the NF-kB binding sites in Figure 2.2 is TCGGGGATTTCC.
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Motifs

T C G G G G g T T T t t
c C G G t G A c T T a C
a C G G G G A T T T t C
T t G G G G A c T T t t
a a G G G G A c T T C C
T t G G G G A c T T C C
T C G G G G A T T c a t
T C G G G G A T T c C t
T a G G G G A a c T a C
T C G G G t A T a a C C

SCORE(Motifs) 3 + 4 + 0 + 0 + 1 + 1 + 1 + 5 + 2 + 3 + 6 + 4 = 30

COUNT(Motifs)

A: 2 2 0 0 0 0 9 1 1 1 3 0
C: 1 6 0 0 0 0 0 4 1 2 4 6
G: 0 0 10 10 9 9 1 0 0 0 0 0
T: 7 2 0 0 1 1 0 5 8 7 3 4

PROFILE(Motifs)

A: .2 .2 0 0 0 0 .9 .1 .1 .1 .3 0
C: .1 .6 0 0 0 0 0 .4 .1 .2 .4 .6
G: 0 0 1 1 .9 .9 .1 0 0 0 0 0
T: .7 .2 0 0 .1 .1 0 .5 .8 .7 .3 .4

CONSENSUS(Motifs) T C G G G G A T T T C C
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FIGURE 2.2 From motif matrix to count matrix to profile matrix to consensus string to
motif logo. The NF-kB binding sites form a 10⇥ 12 motif matrix, with the most frequent
nucleotide in each column shown in upper case letters and all other nucleotides shown
in lower case letters. SCORE(Motifs) counts the total number of unpopular (lower case)
symbols in the motif matrix. The motif matrix results in a 4 ⇥ 12 count matrix holding
the nucleotide counts in every column of the motif matrix; a profile matrix holding the
frequencies of nucleotides in every column of the motif matrix; and a consensus string
formed by the most frequent nucleotide in each column of the count matrix. Finally, the
motif logo is a common way to visualize the conservation of various positions within a
motif. The total height of the letters depicts the information content of the position.
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Towards a more adequate motif scoring function

Consider the second column (containing 6 C, 2 A, and 2 T) and the final column (contain-
ing 6 C and 4 T) in the motif matrix from Figure 2.2. Both of these columns contribute 4
to SCORE(Motifs).

STOP and Think: Does scoring these two columns equally make sense biologi-
cally?

For many biological motifs, certain positions feature two nucleotides with roughly the
same ability to bind to a transcription factor. For example, the sixteen nucleotide-long
CSRE transcription factor binding site in the yeast S. cerevisiae consists of five strongly
conserved positions in addition to eleven weakly conserved positions, each of which
features two nucleotides with similar frequencies (Figure 2.3).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
C G/C G/T T/A C/T G/C C/G A T G/T C/G A T C/T C/T G/T

FIGURE 2.3 The CSRE transcription factor binding site in S. cerevisiae is 16 nucleotides
long, but only five of these positions (1, 8, 9, 12, 13) are strongly conserved. The
remaining 11 positions can take one of two different nucleotides.

Following this example, a more appropriate representation of the consensus string
TCGGGGATTTCC for the NF-kB binding sites should include viable alternatives to the
most popular nucleotides in each column (see Figure 2.4). In this sense, the last column
(6 C, 4 T) in the motif matrix from Figure 2.2 is “more conserved” than the second
column (6 C, 2 A, 2 T) and should receive a lower score.

1 2 3 4 5 6 7 8 9 10 11 12
T C G G G G A T/C T T C C/T

FIGURE 2.4 Taking nucleotides in each column of the NF-kB binding site motif matrix
from Figure 2.2 with frequency at least 0.4 yields a representation of the NF-kB binding
sites with ten strongly conserved positions and two weakly conserved positions (8 and
12).
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Entropy and the motif logo

Every column of PROFILE(Motifs) corresponds to a probability distribution, or a col-
lection of nonnegative numbers that sum to 1. For example, the second column in
Figure 2.2 corresponds to the probabilities 0.2, 0.6, 0.0, and 0.2 for A, C, G, and T,
respectively.

Entropy is a measure of the uncertainty of a probability distribution (p1, . . . , pN),
and is defined as

H(p1, . . . , pN) = �
N
Â

i=1
pi · log2 (pi) .

For example, the entropy of the probability distribution (0.2, 0.6, 0.0, 0.2) corresponding
to the second column of the profile matrix in Figure 2.2 is

�(0.2 log2 0.2 + 0.6 log2 0.6 + 0.0 log2 0.0 + 0.2 log2 0.2) ⇡ 1.371 ,

whereas the entropy of the more conserved final column (0.0, 0.6, 0.0, 0.4) is

�(0.0 log2 0.0 + 0.6 log2 0.6 + 0.0 log2 0.0 + 0.4 log2 0.4) ⇡ 0.971 ,

and the entropy of the very conserved 5th column (0.0, 0.0, 0.9, 0.1) is

�(0.0 log2 0.0 + 0.0 log2 0.0 + 0.9 log2 0.9 + 0.1 log2 0.1) ⇡ 0.467 .

Note that technically, log2 0 is not defined, but in the computation of entropy, we assume
that 0 · log2 0 is equal to 0.

STOP and Think: What are the maximum and minimum possible values for the
entropy of a probability distribution containing four values?

The entropy of the completely conserved third column of the profile matrix in Fig-
ure 2.2 is 0, which is the minimum possible entropy. On the other hand, a column
with equally-likely nucleotides (all probabilities equal to 1/4) has maximum possible
entropy �4 · 1/4 · log2 (1/4) = 2. In general, the more conserved the column, the
smaller its entropy. Thus, entropy offers an improved method of scoring motif matrices:
the entropy of a motif matrix is defined as the sum of the entropies of its columns. In
this book, we will continue to use SCORE(Motifs) for simplicity, but the entropy score is
used more often in practice.
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EXERCISE BREAK: Compute the entropy of the NF-kB motif matrix from Fig-
ure 2.2.

Another application of entropy is the motif logo, a diagram for visualizing motif con-
servation that consists of a stack of letters at each position (see the bottom of Figure 2.2).
The relative sizes of letters indicate their frequency in the column. The total height of
the letters in each column is based on the information content of the column, which is
defined as 2�H(p1, . . . , pN). The lower the entropy, the higher the information content,
meaning that tall columns in the motif logo are highly conserved.

From Motif Finding to Finding a Median String

The Motif Finding Problem

Now that we have a good grasp of scoring a collection of k-mers, we are ready to
formulate the Motif Finding Problem.

Motif Finding Problem:
Given a collection of strings, find a set of k-mers, one from each string, that minimizes
the score of the resulting motif.

Input: A collection of strings Dna and an integer k.
Output: A collection Motifs of k-mers, one from each string in Dna, minimiz-
ing SCORE(Motifs) among all possible choices of k-mers.

A brute force algorithm for the Motif Finding Problem, BRUTEFORCEMOTIFSEARCH,
considers every possible choice of k-mers Motifs from Dna (one k-mer from each string
of n nucleotides) and returns the collection Motifs having minimum score. Because there
are n� k+ 1 choices of k-mers in each of t sequences, there are (n� k+ 1)t different ways
to form Motifs. For each choice of Motifs, the algorithm calculates SCORE(Motifs), which
requires k · t steps. Thus, assuming that k is much smaller than n, the overall running
time of the algorithm is O�

nt · k · t
�
. We need to come up with a faster algorithm!

Reformulating the Motif Finding Problem

Because BRUTEFORCEMOTIFSEARCH is inefficient, we will think about motif finding
in a different way. Instead of exploring all Motifs in Dna and deriving the consensus
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string from Motifs afterwards,

Motifs! CONSENSUS(Motifs) ,

we will explore all potential k-mer consensus strings first and then find the best possible
collection Motifs for each consensus string,

CONSENSUS(Motifs)!Motifs .

To reformulate the Motif Finding Problem, we need to devise an alternative way of
computing SCORE(Motifs). Until now, we have computed SCORE(Motifs), the number
of lower case letters in the motif matrix, column-by-column. For example, in Figure 2.2,
we computed SCORE(Motifs) for the NF-kB motif matrix as

3 + 4 + 0 + 0 + 1 + 1 + 1 + 5 + 2 + 3 + 6 + 4 = 30 .

Figure 2.5 illustrates that SCORE(Motifs) can just as easily be computed row-by-row as

3 + 4 + 2 + 4 + 3 + 2 + 3 + 2 + 4 + 3 = 30 .

Note that each element in the latter sum represents the number of mismatches between
the consensus string TCGGGGATTTCC and a motif in the corresponding row of the motif
matrix, i.e., the Hamming distance between these strings. For the first row of the motif
matrix in Figure 2.5, d(TCGGGGATTTCC,TCGGGGgTTTtt) = 3.

Given a collection of k-mers Motifs = {Motif1, ..., Motift} and a k-mer Pattern, we
now define d(Pattern, Motifs) as the sum of Hamming distances between Pattern and
each Motifi,

d(Pattern, Motifs) =
t

Â
i=1

HAMMINGDISTANCE(Pattern, Motifi) .

Because SCORE(Motifs) corresponds to counting the lower case elements of Motifs
column-by-column and d(CONSENSUS(Motifs), Motifs) corresponds to counting these
elements row-by-row, we obtain that

SCORE(Motifs) = d(CONSENSUS(Motifs), Motifs) .
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Motifs

T C G G G G g T T T t t 3
c C G G t G A c T T a C 4
a C G G G G A T T T t C 2
T t G G G G A c T T t t 4
a a G G G G A c T T C C 3
T t G G G G A c T T C C 2
T C G G G G A T T c a t 3
T C G G G G A T T c C t 2
T a G G G G A a c T a C 4
T C G G G t A T a a C C + 3

SCORE(Motifs) 3 + 4 + 0 + 0 + 1 + 1 + 1 + 5 + 2 + 3 + 6 + 4 = 30

CONSENSUS(Motifs) T C G G G G A T T T C C

FIGURE 2.5 The motif and score matrices in addition to the consensus string for the
NF-kB binding sites, reproduced from Figure 2.2. Rather than count the non-consensus
elements (i.e., lower case nucleotides) column-by-column, we can count them row-by-
row, as highlighted on the right of the motifs matrix. Each value at the end of a row
corresponds to the Hamming distance between that row and the consensus string.

This equation gives us an idea. Instead of searching for a collection of k-mers Motifs
minimizing SCORE(Motifs), let’s instead search for a potential consensus string Pattern
minimizing d(Pattern, Motifs) among all possible k-mers Pattern and all possible choices
of k-mers Motifs in Dna. This problem is equivalent to the Motif Finding Problem.

Equivalent Motif Finding Problem:
Given a collection of strings, find a pattern and a collection of k-mers (one from each string)
that minimizes the distance between all possible patterns and all possible collections of
k-mers.

Input: A collection of strings Dna and an integer k.
Output: A k-mer Pattern and a collection of k-mers Motifs, one from each
string in Dna, minimizing d(Pattern, Motifs) among all possible choices of
Pattern and Motifs.
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The Median String Problem

But wait a second — have we not just made our task more difficult? Instead of having
to search for all Motifs, we now have to search all Motifs as well as all k-mers Pattern.
The key observation for solving the Equivalent Motif Finding Problem is that, given
Pattern, we don’t need to explore all possible collections Motifs in order to minimize
d(Pattern, Motifs).

To explain how this can be done, we define MOTIFS(Pattern, Dna) as a collection
of k-mers that minimizes d(Pattern, Motifs) for a given Pattern and all possible sets of
k-mers Motifs in Dna. For example, for the strings Dna shown below, the five colored
3-mers represent MOTIFS(AAA, Dna).

ttaccttAAC
gATAtctgtc

Dna ACGgcgttcg
ccctAAAgag
cgtcAGAggt

STOP and Think: Given a collection of strings Dna and a k-mer Pattern, design a
fast algorithm for generating MOTIFS(Pattern, Dna).

The reason why we don’t need to consider all possible collections Motifs in Dna =

{Dna1, ..., Dnat} is that we can generate the k-mers in MOTIFS(Pattern, Dna) one at a
time; that is, we can select a k-mer in Dnai independently of selecting k-mers in all other
strings in Dna. Given a k-mer Pattern and a longer string Text, we use d(Pattern, Text) to
denote the minimum Hamming distance between Pattern and any k-mer in Text,

d(Pattern, Text) = min
all k-mers Pattern’ in Text

HAMMINGDISTANCE(Pattern, Pattern’) .

For example,

d(GATTCTCA,gcaaaGACGCTGAccaa) = 3 .

A k-mer in Text that achieves the minimum Hamming distance with Pattern is denoted
MOTIF(Pattern, Text). For the above example,

MOTIF(GATTCTCA,gcaaaGACGCTGAccaa) = GACGCTGA .
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We note that the notation MOTIF(Pattern, Text) is ambiguous because there may be
multiple k-mers in Text that achieve the minimum Hamming distance with Pattern. For
example, MOTIF(AAG,gcAATcctCAGc) could be either AAT or CAG. However, this
ambiguity does not affect the following analysis.

Given a k-mer Pattern and a set of strings Dna = {Dna1, ..., Dnat}, we define
d(Pattern, Dna) as the sum of distances between Pattern and all strings in Dna,

d(Pattern, Dna) =
t

Â
i=1

d(Pattern, Dnai).

For example, for the strings Dna shown below, d(AAA, Dna) = 1 + 1 + 2 + 0 + 1 = 5 .

ttaccttAAC 1
gATAtctgtc 1

Dna ACGgcgttcg 2
ccctAAAgag 0
cgtcAGAggt 1

Our goal is to find a k-mer Pattern that minimizes d(Pattern, Dna) over all k-mers Pattern,
the same task that the Equivalent Motif Finding Problem is trying to achieve. We call
such a k-mer a median string for Dna.

Median String Problem:
Find a median string.

Input: A collection of strings Dna and an integer k.
Output: A k-mer Pattern minimizing d(Pattern, Dna) among all k-mers Pat-
tern.

2B

Notice that finding a median string requires solving a double minimization problem.
We must find a k-mer Pattern that minimizes d(Pattern, Dna), where this function is
itself computed by taking a minimum over all choices of k-mers from each string in Dna.
The pseudocode for a brute-force algorithm, MEDIANSTRING, is given below.
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MEDIANSTRING(Dna, k)
distance 1
for each k-mer Pattern from AA...AA to TT...TT

if distance > d(Pattern,Dna)
distance d(Pattern,Dna)
Median Pattern

return Median

CHARGING STATION (Solving the Median String Problem): Although this
pseudocode is short, it is not without potential pitfalls. Check out this Charging
Station if you fall into one of them.PAGE

107

STOP and Think: Instead of making a time-consuming search through all pos-
sible k-mers in MEDIANSTRING, can you only search through all k-mers that
appear in Dna?

Why have we reformulated the Motif Finding Problem?

To see why we reformulated the Motif Finding Problem as the equivalent Median String
Problem, consider the runtimes of MEDIANSTRING and BRUTEFORCEMOTIFS. The
former algorithm computes d(Pattern, Dna) for each of the 4k k-mers Pattern. Each
computation of d(Pattern, Dna) requires a single pass over each string in Dna, which
requires approximately k · n · t operations for t strings of length n in Dna. Therefore,
MEDIANSTRING has a running time of O

⇣
4k · n · k · t

⌘
, which in practice compares

favorably with the O�
nt · k · t

�
running time of BRUTEFORCEMOTIFSEARCH because

the length of a motif (k) typically does not exceed 20 nucleotides, whereas t is measured
in the thousands.

The Median String Problem teaches an important lesson, which is that sometimes
rethinking how a problem is formulated can lead to dramatic improvements in the
runtime required to solve it. In this case, our simple observation that SCORE(Motifs)
could just as easily be computed row-by-row as column-by-column produced the faster
MEDIANSTRING algorithm.

Of course, the ultimate test of a bioinformatics algorithm is how it performs in
practice. Unfortunately, since MEDIANSTRING has to consider 4k k-mers, it becomes
too slow for the Subtle Motif Problem, for which k = 15. We will run MEDIANSTRING

82



W H I C H D N A PAT T E R N S P L AY T H E R O L E O F M O L E C U L A R C L O C K S ?

with k = 13 in the hope that it will capture a substring of the correct 15-mer motif. The
algorithm still requires half a day to run on our computer and returns the median string
AAAAAtAGaGGGG (with distance 29). This 13-mer is not a substring of the implanted
pattern AAAAAAAAGGGGGGG, but it does come close.

STOP and Think: How can a slightly incorrect median string of length 13 help
us find the correct median string of length 15?

We have thus far assumed that the value of k is known in advance, which is not the case
in practice. As a result, we are forced to run our motif finding algorithms for different
values of k and then try to deduce the correct motif length. Since some regulatory motifs
are rather long — later in the chapter, we will search for a biologically important motif
of length 20 — MEDIANSTRING may be too slow to find them.

Greedy Motif Search

Using the profile matrix to roll dice

Many algorithms are iterative procedures that must choose among many alternatives at
each iteration. Some of these alternatives may lead to correct solutions, whereas others
may not. Greedy algorithms select the “most attractive” alternative at each iteration.
For example, a greedy algorithm in chess might attempt to capture an opponent’s most
valuable piece at every move. Yet anyone who has played chess knows that this strategy
of looking only one move ahead will likely produce disastrous results. In general, most
greedy algorithms typically fail to find an exact solution of the problem; instead, they
are often fast heuristics that trade accuracy for speed in order to find an approximate
solution. Nevertheless, for many biological problems that we will study in this book,
greedy algorithms will prove quite useful.

In this section, we will explore a greedy approach to motif finding. Again, let Motifs
be a collection of k-mers taken from t strings Dna. Recall from our discussion of entropy
that we can view each column of PROFILE(Motifs) as a four-sided biased die. Thus, a
profile matrix with k columns can be viewed as a collection of k dice, which we will roll
to randomly generate a k-mer. For example, if the first column of the profile matrix is
(0.2, 0.1, 0.0, 0.7), then we generate A as the first nucleotide with probability 0.2, C with
probability 0.1, G with probability 0.0, and T with probability 0.7.

In Figure 2.6, we reproduce the profile matrix for the NF-kB binding sites from
Figure 2.2, where the lone colored entry in the i-th column corresponds to the i-th
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nucleotide in ACGGGGATTACC. The probability Pr(ACGGGGATTACC|Profile) that Profile
generates ACGGGGATTACC is computed by simply multiplying the highlighted entries
in the profile matrix.

Profile

A: .2 .2 .0 .0 .0 .0 .9 .1 .1 .1 .3 .0
C: .1 .6 .0 .0 .0 .0 .0 .4 .1 .2 .4 .6
G: .0 .0 1 1 .9 .9 .1 .0 .0 .0 .0 .0
T: .7 .2 .0 .0 .1 .1 .0 .5 .8 .7 .3 .4

Pr(ACGGGGATTACC|Profile) = .2 · .6 ·1 ·1 · .9 · .9 · .9 · .5 · .8 · .1 · .4 · .6 = 0.000839808

FIGURE 2.6 We can generate a random string based on a profile matrix by selecting
the i -th nucleotide in the string with the probability corresponding to that nucleotide in
the i -th column of the profile matrix. The probability that a profile matrix will produce
a given string is given by the product of individual nucleotide probabilities.

A k-mer tends to have a higher probability when it is more similar to the consensus
string of a profile. For example, for the NF-kB profile matrix shown in Figure 2.6 and its
consensus string TCGGGGATTTCC,

Pr(TCGGGGATTTCC|Profile) = 0.7 · 0.6 · 1.0 · 1.0 · 0.9 · 0.9 · 0.9 · 0.5 · 0.8 · 0.7 · 0.4 · 0.6

= 0.0205753 ,

which is larger than the value of Pr(ACGGGGATTACC|Profile) = 0.000839808 that we
computed in Figure 2.6.

EXERCISE BREAK: Compute Pr(TCGTGGATTTCC|Profile), where Profile is the
matrix shown in Figure 2.6.

Given a profile matrix Profile, we can evaluate the probability of every k-mer in a string
Text and find a Profile-most probable k-mer in Text, i.e., a k-mer that was most likely to
have been generated by Profile among all k-mers in Text. For the NF-kB profile matrix,
ACGGGGATTACC is the Profile-most probable 12-mer in ggtACGGGGATTACCt. Indeed,
every other 12-mer in this string has probability 0. In general, if there are multiple
Profile-most probable k-mers in Text, then we select the first such k-mer occurring in
Text.
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Profile-most Probable k-mer Problem:
Find a Profile-most probable k-mer in a string.

Input: A string Text, an integer k, and a 4⇥ k matrix Profile.
Output: A Profile-most probable k-mer in Text.

2C

Our proposed greedy motif search algorithm, GREEDYMOTIFSEARCH, tries each of
the k-mers in Dna1 as the first motif. For a given choice of k-mer Motif1 in Dna1, it
then builds a profile matrix Profile for this lone k-mer, and sets Motif2 equal to the
Profile-most probable k-mer in Dna2. It then iterates by updating Profile as the profile
matrix formed from Motif1 and Motif2, and sets Motif2 equal to the Profile-most probable
k-mer in Dna3. In general, after finding i � 1 k-mers Motifs in the first i � 1 strings
of Dna, GREEDYMOTIFSEARCH constructs Profile(Motifs) and selects the Profile-most
probable k-mer from Dnai based on this profile matrix. After obtaining a k-mer from
each string to generate a collection Motifs, GREEDYMOTIFSEARCH tests to see whether
Motifs outscores the current best scoring collection of motifs and then moves Motif1 one
symbol over in Dna1, beginning the entire process of generating Motifs again.

GREEDYMOTIFSEARCH(Dna, k, t)
BestMotifs motif matrix formed by first k-mers in each string from Dna
for each k-mer Motif in the first string from Dna

Motif1  Motif
for i = 2 to t

form Profile from motifs Motif1, ..., Motifi�1
Motifi  Profile-most probable k-mer in the i-th string in Dna

Motifs (Motif1, ..., Motift)
if SCORE(Motifs) < SCORE(BestMotifs)

BestMotifs Motifs
return BestMotifs

2D

If you are not satisfied with the performance of GREEDYMOTIFSEARCH — even if you
implemented it correctly — then wait until we discuss this algorithm in the next section.

Analyzing greedy motif finding

In contrast to MEDIANSTRING, GREEDYMOTIFSEARCH is fast and can be run with
k = 15 to solve the Subtle Motif Problem (recall that we settled for k = 13 in the
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case of MEDIANSTRING). However, it trades speed for accuracy and returns the 15-
mer gtAAAtAgaGatGtG (total distance: 58), which is very different from the true
implanted motif AAAAAAAAGGGGGGG.

STOP and Think: Why does GREEDYMOTIFSEARCH perform so poorly?

At first glance, GREEDYMOTIFSEARCH may seem like a reasonable algorithm, but
it is not! Let’s see whether GREEDYMOTIFSEARCH will find the (4, 1)-motif ACGT
implanted in the following strings Dna:

ttACCTtaac
gATGTctgtc
acgGCGTtag
ccctaACGAg
cgtcagAGGT

We will assume that the algorithm has already correctly chosen the implanted 4-mer
ACCT from the first string in Dna and constructed the corresponding Profile:

A: 1 0 0 0
C: 0 1 1 0
G: 0 0 0 0
T: 0 0 0 1

The algorithm is now ready to search for a Profile-most probable 4-mer in the second
sequence. The issue, however, is that there are so many zeros in the profile matrix that
the probability of every 4-mer but ACCT is zero! Thus, unless ACCT is present in every
string in Dna, there is little chance that GREEDYMOTIFSEARCH will find the implanted
motif. Zeroes in the profile matrix are not just a minor annoyance but rather a persistent
problem that we must address.

Motif Finding Meets Oliver Cromwell

What is the probability that the sun will not rise tomorrow?

In 1650, after the Scots proclaimed Charles II as king during the English Civil War,
Oliver Cromwell made a famous appeal to the Church of Scotland. Urging them to see
the error of their royal alliance, he pleaded,
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I beseech you, in the bowels of Christ, think it possible that you may be mistaken.

The Scots rejected the appeal, and Cromwell invaded Scotland in response. His quota-
tion later inspired the statistical maxim called Cromwell’s rule, which states that we
should not use probabilities of 0 or 1 unless we are talking about logical statements
that can only be true or false. In other words, we should allow a small probability for
extremely unlikely events, such as “this book was written by aliens” or “the sun will
not rise tomorrow”. We cannot speak to the likelihood of the former event, but in the
18th Century, the French mathematician Pierre-Simon Laplace actually estimated the
probability that the sun will not rise tomorrow (1/1826251), given that it has risen every
day for the past 5000 years. Although this estimate was ridiculed by his contemporaries,
Laplace’s approach to this question now plays an important role in statistics.

In any observed data set, there is the possibility, especially with low-probability
events or small data sets, that an event with nonzero probability does not occur. Its
observed frequency is therefore zero; however, setting the empirical probability of the
event equal to zero represents an inaccurate oversimplification that may cause problems.
By artificially adjusting the probability of rare events, these problems can be mitigated.

Laplace’s Rule of Succession

Cromwell’s rule is relevant to the calculation of the probability of a string based on a
profile matrix. For example, consider the following Profile:

Profile

A: .2 .2 .0 .0 .0 .0 .9 .1 .1 .1 .3 .0
C: .1 .6 .0 .0 .0 .0 .0 .4 .1 .2 .4 .6
G: .0 .0 1 1 .9 .9 .1 .0 .0 .0 .0 .0
T: .7 .2 .0 .0 .1 .1 .0 .5 .8 .7 .3 .4

Pr(TCGTGGATTTCC|Profile) = .7 · .6 · 1 · .0 · .9 · .9 · .9 · .5 · .8 · .7 · .4 · .6 = 0

The fourth symbol of TCGTGGATTTCC causes Pr(TCGTGGATTTCC|Profile) to equal zero.
As a result, the entire string is assigned a zero probability, even though TCGTGGATTTCC
differs from the consensus string at only one position. For that matter, TCGTGGATTTCC
has the same low probability as AAATCTTGGAA, which is very different from the con-, which is very different from the con-
sensus string.

In order to improve this unfair scoring, bioinformaticians often substitute zeroes
with small numbers called pseudocounts. The simplest approach to introducing pseu-
docounts, called Laplace’s Rule of Succession, is similar to the principle that Laplace
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used to calculate the probability that the sun will not rise tomorrow. In the case of
motifs, pseudocounts often amount to adding 1 (or some other small number) to each
element of COUNT(Motifs). For example, say that we have the following motif, count,
and profile matrices:

Motifs

T A A C
G T C T
A C T A
A G G T

COUNT(Motifs)

A: 2 1 1 1

PROFILE(Motifs)

2/4 1/4 1/4 1/4
C: 0 1 1 1 0 1/4 1/4 1/4
G: 1 1 1 0 1/4 1/4 1/4 0
T: 1 1 1 2 1/4 1/4 1/4 2/4

Laplace’s Rule of Succession adds 1 to each element of COUNT(Motifs), updating the
two matrices to the following:

COUNT(Motifs)

A: 2+1 1+1 1+1 1+1

PROFILE(Motifs)

3/8 2/8 2/8 2/8
C: 0+1 1+1 1+1 1+1 1/8 2/8 2/8 2/8
G: 1+1 1+1 1+1 0+1 2/8 2/8 2/8 1/8
T: 1+1 1+1 1+1 2+1 2/8 2/8 2/8 3/8

STOP and Think: How would you use Laplace’s Rule of Succession to address
the shortcomings of GREEDYMOTIFSEARCH?

An improved greedy motif search

The only change we need to introduce to GREEDYMOTIFSEARCH in order to eliminate
zeroes from the profile matrices that it constructs is to replace line 6 of the pseudocode
for GREEDYMOTIFSEARCH:

form Profile from motifs Motif1, ... Motifi�1

with the following line:
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apply Laplace’s Rule of Succession to form Profile from motifs Motif1, ... Motifi�1

We now will apply Laplace’s Rule of Succession to search for the (4, 1)-motif ACGT
implanted in the following strings Dna:

ttACCTtaac
gATGTctgtc

Dna acgGCGTtag
ccctaACGAAg
cgtcagAGGT

Again, let’s assume that the algorithm has already chosen the implanted 4-mer ACCT
from the first sequence. We can construct the corresponding count and profile matrices
using Laplace’s Rule of Succession:

Motifs ACCT

COUNT(Motifs)

A: 1+1 0+1 0+1 0+1

PROFILE(Motifs)

2/5 1/5 1/5 1/5
C: 0+1 1+1 1+1 0+1 1/5 2/5 2/5 1/5
G: 0+1 0+1 0+1 0+1 1/5 1/5 1/5 1/5
T: 0+1 0+1 0+1 1+1 1/5 1/5 1/5 2/5

We use this profile matrix to compute the probabilities of all 4-mers in the second string
from Dna:

gATG ATGT TGTc GTct Tctg ctgt tgtc
1/54 4/54 1/54 4/54 2/54 2/54 1/54

There are two Profile-most probable 4-mers in the second sequence (ATGT and GTct);
let’s assume that we get lucky again and choose the implanted 4-mer ATGT. We now
have the following motif, count, and profile matrices:

Motifs
ACCT
ATGT

COUNT(Motifs)

A: 2+1 0+1 0+1 0+1

PROFILE(Motifs)

3/6 1/6 1/6 1/6
C: 0+1 1+1 1+1 0+1 1/6 2/6 2/6 1/6
G: 0+1 0+1 1+1 0+1 1/6 1/6 2/6 1/6
T: 0+1 1+1 0+1 2+1 1/6 2/6 1/6 3/6
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We use this profile matrix to compute the probabilities of all 4-mers in the third string
from Dna:

acgG cgGC gGCG GCGT CGTt GTta Ttag
12/64 2/64 2/64 12/64 3/64 2/64 2/64

Again, there are two Profile-most probable 4-mers in the second sequence (acgG and
GCGT). This time, we will assume that acgG is selected instead of the implanted 4-mer
GCGT. We now have the following motif, count, and profile matrices:

Motifs
ACCT
ATGT
acgG

COUNT(Motifs)

A: 3+1 0+1 0+1 1+1

PROFILE(Motifs)

4/7 1/7 1/7 1/7
C: 0+1 2+1 1+1 0+1 1/7 3/7 2/7 1/7
G: 0+1 0+1 2+1 1+1 1/7 1/7 3/7 2/7
T: 0+1 1+1 0+1 2+1 1/7 2/7 1/7 3/7

We use this profile matrix to compute probabilities of all 4-mers in the fourth string
from Dna:

ccct ccta ctaA taAC aACG ACGAA CGAAg
18/74 3/74 2/74 1/74 16/74 36/74 2/74

Despite the fact that we missed the implanted 4-mer in the third sequence, we have
now found the implanted 4-mer in the fourth string in Dna as the Profile-most probable
4-mer ACGAA. This provides us with the following motif, count, and profile matrices:

Motifs

ACCT
ATGT
acgG
ACGAA

COUNT(Motifs)

A: 4+1 0+1 0+1 0+1

PROFILE(Motifs)

5/8 1/8 1/8 2/8
C: 0+1 3+1 1+1 0+1 1/8 4/8 2/8 1/8
G: 0+1 0+1 3+1 1+1 1/8 1/8 4/8 2/8
T: 0+1 1+1 0+1 2+1 1/8 2/8 1/8 3/8

We now use this profile to compute the probabilities of all 4-mers in the fifth string in
Dna:
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cgtc gtca tcag cagA agAG gAGG AGGT
1/84 8/84 8/84 8/84 10/84 8/84 60/84

The Profile-most probable 4-mer of the fifth string in Dna is AGGT, the implanted 4-mer.
As a result, GREEDYMOTIFSEARCH has produced the following motif matrix, which
implies the correct consensus string ACGT:

Motifs

ACCT
ATGT
acgG
ACGA
AGGT

CONSENSUS(Motifs) ACGT

You have now seen the power of pseudocounts illustrated on a small example. Run-
ning GREEDYMOTIFSEARCH with pseudocounts to solve the Subtle Motif Problem
returns a collection of 15-mers Motifs with SCORE(Motifs) = 41 and CONSENSUS(Motifs)
= AAAAAtAgaGGGGtt. Thus, Laplace’s Rule of Succession has provided a great im-
provement over the original GREEDYMOTIFSEARCH, which returned the consensus
string gTtAAAtAgaGatGtG with SCORE(Motifs) = 58.

2E

You may be satisfied with the performance of GREEDYMOTIFSEARCH, but you
should know by now that your authors are never satisfied. Can we design an even
more accurate motif finding algorithm?

Randomized Motif Search

Rolling dice to find motifs

We will now turn to randomized algorithms that flip coins and roll dice in order to
search for motifs. Making random algorithmic decisions may sound like a disastrous
idea — just imagine a chess game in which every move would be decided by rolling a
die. However, an 18th Century French mathematician and naturalist, Comte de Buffon,
first proved that randomized algorithms are useful by randomly dropping needles
onto parallel strips of wood and using the results of this experiment to accurately
approximate the constant p (see DETOUR: Buffon’s Needle). PAGE 109

Randomized algorithms may be nonintuitive because they lack the control of tra-
ditional algorithms. Some randomized algorithms are Las Vegas algorithms, which
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deliver solutions that are guaranteed to be exact, despite the fact that they rely on mak-
ing random decisions. Yet most randomized algorithms, including the motif finding
algorithms that we will consider in this chapter, are Monte Carlo algorithms. These
algorithms are not guaranteed to return exact solutions, but they do quickly find ap-
proximate solutions. Because of their speed, they can be run many times, allowing us to
choose the best approximation from thousands of runs.

We previously defined PROFILE(Motifs) as the profile matrix constructed from a
collection of k-mers Motifs in Dna. Now, given a collection of strings Dna and an
arbitrary 4⇥ k matrix Profile, we define MOTIFS(Profile, Dna) as the collection of k-mers
formed by the Profile-most probable k-mers in each sequence from Dna. For example,
consider the following Profile and Dna:

Profile

A: 4/5 0 0 1/5

Dna

ttaccttaac
C: 0 3/5 1/5 0 gatgtctgtc
G: 1/5 1/5 4/5 0 acggcgttag
T: 0 1/5 0 4/5 ccctaacgag

cgtcagaggt

Taking the Profile-most probable 4-mer from each row of Dna produces the following
4-mers (shown in red):

ttaccttaac
gatgtctgtc

MOTIFS(Profile, Dna) acggcgttag
ccctaacgag
cgtcagaggt

In general, we can begin from a collection of randomly chosen k-mers Motifs in Dna,
construct PROFILE(Motifs), and use this profile to generate a new collection of k-mers:

MOTIFS(PROFILE(Motifs),Dna)

Why would we do this? Because our hope is that MOTIFS(PROFILE(Motifs), Dna) has a
better score than the original collection of k-mers Motifs. We can then form the profile
matrix of these k-mers,

PROFILE(MOTIFS(PROFILE(Motifs), Dna)) ,

and use it to form the most probable k-mers,
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MOTIFS(PROFILE(MOTIFS(PROFILE(Motifs), Dna)), Dna) .

We can continue to iterate. . .

. . . PROFILE(MOTIFS(PROFILE(MOTIFS(PROFILE(Motifs), Dna)), Dna)). . .

for as long as the score of the constructed motifs keeps improving, which is exactly what
RANDOMIZEDMOTIFSEARCH does. To implement this algorithm, you will need to
randomly select the initial collection of k-mers that form the motif matrix Motifs. To do
so, you will need a random number generator (denoted RANDOM(N)) that is equally
likely to return any integer from 1 to N. You might like to think about this random
number generator as an unbiased N-sided die.

RANDOMIZEDMOTIFSEARCH(Dna, k, t)
randomly select k -mers Motifs = (Motif1, . . . ,Motift) in each string from Dna
BestMotifs Motifs
while forever

Profile PROFILE(Motifs)
Motifs MOTIFS(Profile,Dna)
if SCORE(Motifs) < SCORE(BestMotifs)

BestMotifs Motifs
else

return BestMotifs

2F

EXERCISE BREAK: Prove that RANDOMIZEDMOTIFSEARCH will eventually
terminate.

Since a single run of RANDOMIZEDMOTIFSEARCH may generate a rather poor set of
motifs, bioinformaticians usually run this algorithm thousands of times. On each run,
they begin from a new randomly selected set of k-mers, selecting the best set of k-mers
found in all these runs.

Why randomized motif search works

At first glance, RANDOMIZEDMOTIFSEARCH appears to be doomed. How can this
algorithm, which starts from a random guess, possibly find anything useful? To explore
RANDOMIZEDMOTIFSEARCH, let’s run it on five short strings with the implanted
(4, 1)-motif ACGT (shown in upper case letters below) and imagine that it chooses the
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following 4-mers Motifs (shown in red) at the first iteration. As expected, it misses the
implanted motif in nearly every string.

ttACCTtaac
gATGTctgtc

Dna ccgGCGTtag
cactaACGAg
cgtcagAGGT

Below, we construct the profile matrix PROFILE(Motifs) of the chosen 4-mers.

Motifs PROFILE(Motifs)
t a a c A: 0.4 0.2 0.2 0.2
G T c t C: 0.2 0.4 0.2 0.2
c c g G G: 0.2 0.2 0.4 0.2
a c t a T: 0.2 0.2 0.2 0.4
A G G T

We can now compute the probabilities of every 4-mer in Dna based on this profile
matrix. For example, the probability of the first 4-mer in the first string of Dna is
PR(ttAC|Profile) = 0.2 · 0.2 · 0.2 · 0.2 = 0.0016. The maximum probabilities in every
row are shown in red below.

ttAC tACC ACCT CCTt CTta Ttaa taac
.0016 .0016 .0128 .0064 .0016 .0016 .0016

gATG ATGT TGTc GTct Tctg ctgt tgtc
.0016 .0128 .0016 .0032 .0032 .0032 .0016

ccgG cgGC gGCG GCGT CGTt GTta Ttag
.0064 .0036 .0016 .0128 .0032 .0016 .0016

cact acta ctaA taAC aACG ACGA CGAg
.0032 .0064 .0016 .0016 .0032 .0128 .0016

cgtc gtca tcag cagA agAG gAGG AGGT
.0016 .0016 .0016 .0032 .0032 .0032 .0128

We select the most probable 4-mer in each row above as our new collection Motifs
(shown below). Notice that this collection has captured all five implanted motifs in Dna!
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ttACCTtaac
gATGTctgtc

Dna ccgGCGTtag
cactaACGAg
cgtcagAGGT

STOP and Think: How is it possible that randomly chosen k-mers have led us to
the correct implanted k-mer? If you think we manufactured this example, select
your own initial 4-mers and see what happens.

For the Subtle Motif Problem with implanted 15-mer AAAAAAAAGGGGGGG, when we
run RANDOMIZEDMOTIFSEARCH 100,000 times (each time with new randomly se-
lected k-mers), it returns the 15-mers shown in Figure 2.7 as the lowest scoring collection
Motifs across all iterations, resulting in the consensus string AAAAAAAAacaGGGG with
score 43. These strings are only slightly less conserved than the collection of im-
planted (15, 4)-motifs with score 40 (or the motif returned by GREEDYMOTIFSEARCH

with score 41), and it largely captures the implanted motif. Furthermore, unlike
GREEDYMOTIFSEARCH, RANDOMIZEDMOTIFSEARCH can be run for a larger num-
ber of iterations to discover better and better motifs.

Score

Motifs

AAAtAcAgACAGcGt 5
AAAAAAtAgCAGGGt 3
tAAAAtAAACAGcGG 3
AcAgAAAAAaAGGGG 3
AAAAtAAAACtGcGa 4
AtAgAcgAACAcGGt 6
cAAAAAgAgaAGGGG 4
AtAgAAAAggAaGGG 5
AAgAAAAAAgAGaGG 3
cAtAAtgAACtGtGa 7

CONSENSUS(Motifs) AAAAAAAAACAGGGG 43

FIGURE 2.7 The lowest scoring collection of strings Motifs produced by 100,000 runs
of RANDOMIZEDMOTIFSEARCH, along with their consensus string and score for the
Subtle Motif Problem.
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STOP and Think: Does your run of RANDOMIZEDMOTIFSEARCH re-
turn a similar consensus string? How many times do you need to run
RANDOMIZEDMOTIFSEARCH to obtain the implanted (15, 4)-motif with dis-
tance 40?

Although the motifs returned by RANDOMIZEDMOTIFSEARCH are slightly less con-
served than the motifs returned by MEDIANSTRING, RANDOMIZEDMOTIFSEARCH

has the advantage of being able to find longer motifs (since MEDIANSTRING becomes
too slow for longer motifs). In the epilogue, we will see that this feature is important in
practice.

How Can a Randomized Algorithm Perform So Well?

In the previous section, we began with a collection of implanted motifs (with consensus
ACGT) that resulted in the following profile matrix.

A: 0.8 0.0 0.0 0.2
C: 0.0 0.6 0.2 0.0
G: 0.2 0.2 0.8 0.0
T: 0.0 0.2 0.0 0.8

If the strings in Dna were truly random, then we would expect that all nucleotides
in the selected k-mers would be equally likely, resulting in an expected Profile in which
every entry is approximately 0.25:

A: 0.25 0.25 0.25 0.25
C: 0.25 0.25 0.25 0.25
G: 0.25 0.25 0.25 0.25
T: 0.25 0.25 0.25 0.25

Such a uniform profile is essentially useless for motif finding because no string is more
probable than any other according to this profile and because it does not provide any
clues on what an implanted motif looks like.

At the opposite end of the spectrum, if we were incredibly lucky, we would choose
the implanted k-mers Motifs from the very beginning, resulting in the first of the two
profile matrices above. In practice, we are likely to obtain a profile somewhere in
between these two extremes, such as the following:
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A: 0.4 0.2 0.2 0.2
C: 0.2 0.4 0.2 0.2
G: 0.2 0.2 0.4 0.2
T: 0.2 0.2 0.2 0.4

This profile matrix has already started to point us toward the implanted motif ACGT,
i.e., ACGT is the most likely 4-mer that can be generated by this profile. Fortunately,
RANDOMIZEDMOTIFSEARCH is designed so that subsequent steps have a good chance
of leading us toward this implanted motif (although it is not certain).

If you still doubt the efficacy of randomized algorithms, consider the following
argument. We have already noticed that if the strings in Dna were random, then
RANDOMIZEDMOTIFSEARCH would start from a nearly uniform profile, and there
would be nothing to work with. However, the key observation is that the strings in Dna
are not random because they include the implanted motif! These multiple occurrences
of the same motif may create a bias in the profile matrix, directing it away from the
uniform profile and toward the implanted motif. For example, consider again the
original randomly selected k-mers Motifs (shown in red):

ttACCTtaac
gATGTctgtc

Dna ccgGCGTtag
cactaACGAg
cgtcagAGGT

You will see that the 4-mer AGGT in the last string happened to capture the implanted
motif simply by chance. In fact, the profile formed from the remaining 4-mers (taac,
GTct, ccgG, and acta) is uniform.

EXERCISE BREAK: Compute the probability that ten randomly selected 15-
mers from ten 600-nucleotide long strings (such as in the Subtle Motif Problem)
capture at least one implanted 15-mer.

Although the probability that randomly selected k-mers match all implanted motifs is
negligible, the probability that they capture at least one implanted motif is significant.
Even in the case of difficult motif finding problems for which this probability is small,
we can run RANDOMIZEDMOTIFSEARCH many times, so that it will almost certainly
catch at least one implanted motif, thus creating a statistical bias pointing toward the
correct motif.
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Unfortunately, capturing a single implanted motif is often insufficient to steer
RANDOMIZEDMOTIFSEARCH to an optimal solution. Therefore, since the number
of starting positions of k-mers is huge, the strategy of randomly selecting motifs is
often not as successful as in the simple example above. The chance that these randomly
selected k-mers will be able to guide us to the optimal solution is relatively small.

EXERCISE BREAK: Compute the probability that ten randomly selected 15-
mers from the ten 600-nucleotide long strings in the Subtle Motif Problem capture
at least two implanted 15-mers.

Gibbs Sampling

Note that RANDOMIZEDMOTIFSEARCH may change all t strings in Motifs in a single
iteration. This strategy may prove reckless, since some correct motifs (captured in
Motifs) may potentially be discarded at the next iteration. GIBBSSAMPLER is a more
cautious iterative algorithm that discards a single k-mer from the current set of motifs at
each iteration and decides to either keep it or replace it with a new one. This algorithm
thus moves with more caution in the space of all motifs, as illustrated below.

ttaccttaac ttaccttaac ttaccttaac ttaccttaac
gatatctgtc gatatctgtc gatatctgtc gatatctgtc
acggcgttcg ! acggcgttcg acggcgttcg ! acggcgttcg
ccctaaagag ccctaaagag ccctaaagag ccctaaagag
cgtcagaggt cgtcagaggt cgtcagaggt cgtcagaggt

RANDOMIZEDMOTIFSEARCH GIBBSSAMPLER

(may change all k-mers in one step) (changes one k-mer in one step)

Like RANDOMIZEDMOTIFSEARCH, GIBBSSAMPLER starts with randomly chosen
k-mers in each of t DNA sequences, but it makes a random rather than a deterministic
choice at each iteration. It uses randomly selected k-mers Motifs = (Motif1, . . . , Motift)
to come up with another (hopefully better scoring) set of k-mers. In contrast with
RANDOMIZEDMOTIFSEARCH, which deterministically defines new motifs as

MOTIFS(PROFILE(Motifs), Dna) ,
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GIBBSSAMPLER randomly selects an integer i between 1 and t and then randomly
changes a single k-mer Motifi.

To describe how GIBBSSAMPLER updates Motifs, we will need a slightly more
advanced random number generator. Given a probability distribution (p1, . . . , pn), this
random number generator, denoted RANDOM(p1, . . . , pn), models an n-sided biased
die and returns integer i with probability pi. For example, the standard six-sided fair
die represents the random number generator

RANDOM(1/6, 1/6, 1/6, 1/6, 1/6, 1/6) ,

whereas a biased die might represent the random number generator

RANDOM(0.1, 0.2, 0.3, 0.05, 0.1, 0.25) .

GIBBSSAMPLER further generalizes the random number generator by using the
function RANDOM(p1, . . . , pn) defined for any set of non-negative numbers, i.e., not
necessarily satisfying the condition Ân

i=1 pi = 1. Specifically, if Ân
i=1 pi = C > 0, then

RANDOM(p1, . . . , pn) is defined as RANDOM(p1/C, . . . , pn/C), where (p1/C, . . . , pn/C)
is a probability distribution. For example, given the values (p1, p2, p3) = (0.1, 0.2, 0.3)
with 0.1 + 0.2 + 0.3 = 0.6,

RANDOM(0.1, 0.2, 0.3) = RANDOM(0.1/0.6, 0.2/0.6, 0.3/0.6)

= RANDOM(1/6, 1/3, 1/2) .

STOP and Think: Implement RANDOM(p1, . . . , pn) so that it uses RANDOM(X)

(for an appropriately chosen integer X) as a subroutine.

We have previously defined the notion of a Profile-most probable k-mer in a string. We
now define a Profile-randomly generated k-mer in a string Text. For each k-mer Pattern
in Text, compute the probability Pr(Pattern|Profile), resulting in n = |Text|� k+ 1 proba-
bilities (p1, . . . , pn). These probabilities do not necessarily sum to 1, but we can still form
the random number generator RANDOM(p1, . . . , pn) based on them. GIBBSSAMPLER

uses this random number generator to select a Profile-randomly generated k-mer at each
step: if the die rolls the number i, then we define the Profile-randomly generated k-mer
as the i-th k-mer in Text. While the pseudocode below repeats this procedure N times, in
practice GIBBSSAMPLER depends on various stopping rules that are beyond the scope
of this chapter.
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GIBBSSAMPLER(Dna, k, t, N)
randomly select k-mers Motifs = (Motif1, ..., Motift) in each string from Dna
BestMotifs Motifs
for j 1 to N

i RANDOM(t)
Profile profile matrix formed from all strings in Motifs except for Motifi
Motifi  Profile-randomly generated k-mer in the i-th sequence
if SCORE(Motifs) < SCORE(BestMotifs)

BestMotifs Motifs
return BestMotifs

2G

STOP and Think: Note that in contrast to RANDOMIZEDMOTIFSEARCH, which
always moves from higher to lower scoring Motifs, GIBBSSAMPLER may move
from lower to higher scoring Motifs. Why is this reasonable?

Gibbs Sampling in Action

We illustrate how GIBBSSAMPLER works on the same strings Dna that we considered
before. Imagine that, at the initial step, the algorithm has chosen the following 4-mers
(shown in red) and has randomly selected the third string for removal.

ttACCTtaac ttACCTtaac
gATGTctgtc gATGTctgtc

Dna ccgGCGTtag �! ----------
cactaACGAg cactaACGAg
cgtcagAGGT cgtcagAGGT

This results in the following motif, count, and profile matrices.

t a a c
Motifs G T c t

a c t a
A G G T

COUNT(Motifs)

A: 2 1 1 1

PROFILE(Motifs)

A: 2/4 1/4 1/4 1/4
C: 0 1 1 1 C: 0 1/4 1/4 1/4
G: 1 1 1 0 G: 1/4 1/4 1/4 0
T: 1 1 1 2 T: 1/4 1/4 1/4 2/4
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Note that the profile matrix is only slightly more conserved than the uniform profile,
making us wonder whether we have any chance to be steered toward the implanted
motif. We now use this profile matrix to compute the probabilities of all 4-mers in the
deleted string ccgGCGTtag:

ccgG cgGC gGCG GCGT CGTt GTta Ttag
0 0 0 1/128 0 1/256 0

Note that all but two of these probabilities are zero. This situation is similar to the one
we encountered with GREEDYMOTIFSEARCH, and as before, we need to augment zero
probabilities with small pseudocounts to avoid disastrous results.

Application of Laplace’s Rule of Succession to the count matrix above yields the
following updated count and profile matrices:

COUNT(Motifs)

A: 3 2 2 2

PROFILE(Motifs)

A: 3/8 2/8 2/8 2/8
C: 1 2 2 2 C: 1/8 2/8 2/8 2/8
G: 2 2 2 1 G: 2/8 2/8 2/8 1/8
T: 2 2 2 3 T: 2/8 2/8 2/8 3/8

After adding pseudocounts, the 4-mer probabilities in the deleted string ccgGCGTtag
are recomputed as follows:

ccgG cgGC gGCG GCGT CGTt GTta Ttag
4/84 8/84 8/84 24/84 12/84 16/84 8/84

Since these probabilities sum to C = 80/84, our hypothetical seven-sided die is repre-
sented by the random number generator

RANDOM

✓
4/84

80/84 ,
8/84

80/84 ,
8/84

80/84 ,
24/84

80/84 ,
12/84

80/84 ,
16/84

80/84 ,
8/84

80/84

◆

= RANDOM

✓
4
80

,
8

80
,

8
80

,
24
80

,
12
80

,
16
80

,
8

80

◆
.

Let’s assume that after rolling this seven-sided die, we arrive at the Profile-randomly
generated 4-mer GCGT (the fourth 4-mer in the deleted sequence). The deleted string
ccgGCGTtag is now added back to the collection of motifs, and GCGT substitutes the
previously chosen ccgG in the third string in Dna, as shown below. We then roll a fair
five-sided die and randomly select the first string from Dna for removal.
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ttACCTtaac ----------
gATGTctgtc gATGTctgtc

Dna ccgGCGTtag �! ccgGCGTtag
cactaACGAg cactaACGAg
cgtcagAGGT cgtcagAGGT

After constructing the motif and profile matrices, we obtain the following:

Motifs

G T c t

PROFILE(Motifs)

A: 2/4 0 0 1/4
G C G T C: 0 2/4 1/4 0
a c t a G: 2/4 1/4 2/4 0
A G G T T: 0 1/4 1/4 3/4

Note that the profile matrix looks more biased toward the implanted motif than the
previous profile matrix did. We update the count and profile matrices with pseudo-
counts:

COUNT(Motifs)

A: 3 1 1 2

PROFILE(Motifs)

A: 3/8 1/8 1/8 2/8
C: 1 3 2 1 C: 1/8 3/8 2/8 1/8
G: 3 2 3 1 G: 3/8 2/8 3/8 1/8
T: 1 2 2 4 T: 1/8 2/8 2/8 4/8

Then, we compute the probabilities of all 4-mers in the deleted string ttACCTtaac:

ttAC tACC ACCT CCTt CTta Ttaa taac
2/84 2/84 72/84 24/84 8/84 4/84 1/84

When we roll a seven-sided die, we arrive at the Profile-randomly generated k-mer
ACCT, which we add to the collection Motifs. After rolling the five-sided die once again,
we randomly select the fourth string for removal.

ttACCTtaac ttACCTtaac
gATGTctgtc gATGTctgtc

Dna ccgGCGTtag �! ccgGCGTtag
cactaACGAg ----------
cgtcagAGGT cgtcagAGGT

We further add pseudocounts and construct the resulting count and profile matrices:
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A C C T
Motifs G T c t

G C G T
A G G T

COUNT(Motifs)

A: 3 1 1 1

PROFILE(Motifs)

A: 3/8 1/8 1/8 1/8
C: 1 3 3 1 C: 1/8 3/8 3/8 1/8
G: 3 2 3 1 G: 3/8 2/8 3/8 1/8
T: 1 2 1 5 T: 1/8 2/8 1/8 5/8

We now compute the probabilities of all 4-mers in the deleted string cactaACGAg:

cact acta ctaA taAC aACG ACGA CGAg
15/84 9/84 2/84 1/84 9/84 27/84 2/84

We need to roll a seven-sided die to produce a Profile-randomly generated 4-mer. As-
suming the most probable scenario in which we select ACGA, we update the selected
4-mers as follows:

ttACCTtaac
gATGTctgtc

Dna ccgGCGTtag
cactaACGAg
cgtcagAGGT

You can see that the algorithm is beginning to converge. Rest assured that a subse-
quent iteration will produce all implanted motifs after we select the second string in Dna
(when the incorrect 4-mer GTctwill likely change into the implanted (4, 1)-motif ATGT).

STOP and Think: Run GIBBSSAMPLER on the Subtle Motif Problem. What do
you find?

Although GIBBSSAMPLER performs well in many cases, it may converge to a subop-
timal solution, particularly for difficult search problems with elusive motifs. A local
optimum is a solution that is optimal within a small neighboring set of solutions, which
is in contrast to a global optimum, or the optimal solution among all possible solutions.
Since GIBBSSAMPLER explores just a small subset of solutions, it may “get stuck” in a
local optimum. For this reason, similarly to RANDOMIZEDMOTIFSEARCH, it should
be run many times with the hope that one of these runs will produce the best-scoring
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motifs. Yet convergence to a local optimum is just one of many issues we must con-
sider in motif finding; see DETOUR: Complications in Motif Finding for some otherPAGEPAGE 112112
challenges.

When we run GIBBSSAMPLER 2,000 times on the Subtle Motif Problem with im-
planted 15-mer AAAAAAAAGGGGGGG (each time with new randomly selected k-mers for
N = 200 iterations), it returns a collection Motifs with consensus AAAAAAgAGGGGGGt
and SCORE(Motifs) equal to 38. This score is even lower than the score of 40 expected
from the implanted motifs!

Epilogue: How Does Tuberculosis Hibernate to Hide from Antibiotics?

Tuberculosis (TB) is an infectious disease that is caused by the Mycobacterium tuberculo-
sis bacterium (MTB) and is responsible for over a million deaths each year. Although the
spread of TB has been greatly reduced due to antibiotics, strains that resist all available
treatments are now emerging. MTB is successful as a pathogen because it can persist in
humans for decades without causing disease; in fact, one-third of the world population
has latent MTB infections, in which MTB lies dormant within the host’s body and may
or may not reactivate at a later time. The widespread prevalence of latent infections
makes it difficult to control TB epidemics. Biologists are therefore interested in finding
out what makes the disease latent and how MTB activates itself within a host.

It remains unclear why MTB can stay latent for so long and how it survives during
latency. The resistance of latent TB to antibiotics implies that MTB may have an ability
to shut down expression of most genes and stay dormant, not unlike bears hibernating
in the winter. Hibernation in bacteria is called sporulation because many bacteria
form protective and metabolically dormant spores that can survive in tough conditions,
allowing the bacteria to persist in the environment until conditions improve.

Hypoxia, or oxygen shortage, is often associated with latent forms of TB. Biologists
have found that MTB becomes dormant in low-oxygen environments, presumably with
the idea that the host’s lungs will recover enough to potentially spread the disease in
the future. Since MTB shows a remarkable ability to survive for years without oxygen,
it is important to identify MTB genes responsible for the development of the latent state
under hypoxic conditions. Biologists are interested in finding a transcription factor that
“senses” the shortage of oxygen and starts a genetic program that affects the expression
of many genes, allowing MTB to adapt to hypoxia.

In 2003, biologists found the dormancy survival regulator (DosR), a transcription
factor that regulates many genes whose expression dramatically changes under hypoxic
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conditions. However, it remained unclear how DosR regulates these genes, and its
transcription factor binding site remained unknown. In an attempt to resolve this
puzzle, biologists performed a DNA array experiment and found 25 genes whose
expression levels significantly changed in hypoxic conditions. Given the upstream
regions of these genes, each of which is 250 nucleotides long, we would like to discover
the “hidden message” that DosR uses to control the expression of these genes.

To simplify the problem a bit, we have selected just 10 of the 25 genes, resulting
in the DosR dataset. We will try to identify motifs in this dataset using the arsenal of
motif finding tools that we have developed. However, we will not give you a hint about
the DosR motif.

What k-mer size should we choose in order to analyze the DosR dataset using
MEDIANSTRING and RANDOMIZEDMOTIFSEARCH? Taking a wild guess and run-
ning these algorithms for k from 8 to 12 returns the consensus strings shown below.

MEDIANSTRING RANDOMIZEDMOTIFSEARCH

k Consensus Score k Consensus Score
8 CATCGGCC 11 8 CCGACGGG 13
9 GGCGGGGAC 16 9 CCATCGGCC 16

10 GGTGGCCACC 19 10 CCATCGGCCC 21
11 GGACTTCCGGC 20 11 ACCTTCGGCCC 25
12 GGACTTCCGGCC 23 12 GGACCAACGGCC 28

STOP and Think: Can you infer the DosR binding site from these median strings?
What do you think is the length of the binding site?

Note that although the consensus strings returned by RANDOMIZEDMOTIFSEARCH

generally deviate from the median strings, the consensus 12-mer (GGACCAACGGCC,
with score 28) is very similar to the median string (GGACTTCCGGCC, with score 23).

While the motifs returned by RANDOMIZEDMOTIFSEARCH are slightly less con-
served than the motifs returned by MEDIANSTRING, the former algorithm has the
advantage of being able to find longer motifs (since MEDIANSTRING becomes too slow
for longer motifs). The motif of length 20 returned by RANDOMIZEDMOTIFSEARCH is
CGGGACCTACGTCCCTAGCC (with score 57). As shown below, the consensus strings of
length 12 found by RANDOMIZEDMOTIFSEARCH and MEDIANSTRING are “embed-
ded” with small variations in the longer motif of length 20:
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GGACCAACGGCC
CGGGACCTACGTCCCTAGCC

GGACTTCCGGCC

Finally, in 2,000 runs with N = 200, GIBBSSAMPLER returned the same consensus
string of length 20 for the DosR dataset as RANDOMIZEDMOTIFSEARCH but generated
a different collection of motifs with a smaller score of 55.

As you have seen in this chapter, different motif finding algorithms generate some-
what different results, and it remains unclear how to identify the DosR motif in MTB.
Try to answer this question and find all putative DosR motifs in MTB as well as all
genes that they regulate. We will provide the upstream regions of all 25 genes identified
in the DosR study to help you address the following problem.

CHALLENGE PROBLEM: Infer the profile of the DosR motif and find all itsInfer the profile of the DosR motif and find all its
putative occurrences inputative occurrences in Mycobacterium tuberculosis.Mycobacterium tuberculosis.
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Charging Stations

Solving the Median String Problem

The first potential issue with implementing MEDIANSTRING is writing a function to
compute d(Pattern, Dna) = Ât

i=1 d(Pattern, Dnai), the sum of distances between Pattern
and each string in Dna = {Dna1, . . . , Dnat}. This task is achieved by the following
pseudocode.

DISTANCEBETWEENPATTERNANDSTRINGS(Pattern, Dna)
k |Pattern|
distance 0
for each string Text in Dna

HammingDistance 1
for each k-mer Pattern’ in Text

if HammingDistance > HAMMINGDISTANCE(Pattern, Pattern’)
HammingDistance HAMMINGDISTANCE(Pattern, Pattern’)

distance distance + HammingDistance

return distance

2H

To solve the Median String Problem, we need to iterate through all possible 4k k-
mers Pattern before computing d(Pattern, Dna). The pseudocode below is a modifi-
cation of MEDIANSTRING using the function NUMBERTOPATTERN (implemented in
CHARGING STATION: Converting Patterns Into Numbers and Vice-Versa), which

PAGE
41

is applied to convert all integers from 0 to 4k � 1 into all possible k-mers.

MEDIANSTRING(Dna, k)
distance 1
for i 0 to 4k � 1

Pattern NUMBERTOPATTERN(i, k)
if distance > DISTANCEBETWEENPATTERNANDSTRINGS(Pattern,Dna)

distance DISTANCEBETWEENPATTERNANDSTRINGS(Pattern,Dna)
Median Pattern

return Median
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Detours

Gene expression

Genes encode proteins, and proteins dictate cell function. To respond to changes in their
environment, cells must therefore control their protein levels. The flow of information
from DNA to RNA to protein means that the cell can adjust the amount of proteins that
it produces during both transcription (DNA to RNA) and translation (RNA to protein).

Transcription begins when an RNA polymerase binds to a promoter sequence on
the DNA molecule, which is often located just upstream from the starting point for
transcription. The initiation of transcription is a convenient control point for the cell
to regulate gene expression since it is at the very beginning of the protein production
process. The genes transcribed in a cell are controlled by various transcription regulators
that may increase or suppress transcription.

DNA arrays

A DNA array is a collection of DNA molecules attached to a solid surface. Each spot on
the array is assigned a unique DNA sequence called a probe that measures the expres-
sion level of a specific gene, known as a target. In most arrays, probes are synthesized
and then attached to a glass or silicon chip (Figure 2.8).

FIGURE 2.8 Fluorescently labeled DNA binds to a complementary probe on a DNA
array.

Fluorescently labeled targets then bind to their corresponding probe (e.g., when
their sequences are complementary), generating a fluorescent signal. The strength of
this signal depends upon the amount of target sample that binds to the probe at a given
spot. Thus, the higher the expression level of a gene, the higher the intensity of its
fluorescent signal on the array. Since an array may contain millions of probes, biologists
can measure the expression of many genes in a single array experiment. The DNA array
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experiment that identified the evening element in Arabidopsis thaliana measured the
expression of 8,000 genes.

Buffon’s needle

Comte de Buffon was a prolific 18th Century naturalist whose writings on natural
history were popular at the time. However, his first paper was in mathematics; in 1733,
he wrote an essay on a Medieval French game called “Le jeu de franc carreau”. In this
game, a single player flips a coin into the air, and the coin lands on a checkerboard.
The player wins if the coin lands completely within one of the squares on the board,
and loses otherwise (Figure 2.9 (left)). Buffon asked a natural question: what is the
probability that the player wins?

1 

r 

r 
r 

FIGURE 2.9 (Left) A game of “franc carreau” with four coins. Two of the coins have
landed within one of the squares of the checkerboard and are considered winners,
whereas the other two have landed on a boundary and are considered losers. (Right)
Three coins shown on a single square of the checkerboard (the green outside square);
one coin is a loser, another is a winner, and the third corresponds to a boundary case.
You can see that if the coin has radius r, then the probability of winning the game
corresponds to the probability that the center of the coin (shown as a red dot) lands
within the blue square, which has side length 1� 2r. This probability is the ratio of the
squares’ areas, which is (1 � 2r)2.

Let’s assume that the checkerboard consists of just a single square with side length 1,
that the coin has radius r < 1/2, and that the center of the coin always lands within the
square. Then the player can only win if the center of the circle falls within an imaginary
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central square of side length 1� 2r (Figure 2.9 (right)). Assuming that the coin lands
anywhere on the larger square with uniform probability, then the probability that the
coin falls completely within the smaller square is given by the ratio of the areas of the
two squares, or (1� 2r)2.

Four decades later, Buffon published a paper describing a similar game in which the
player uniformly drops a needle onto a floor covered by long wooden panels of equal
width. In this game, which has become known as Buffon’s needle, the player wins if
the needle falls entirely within one of the panels. Note that computing the probability
of a win is now complicated by the fact that the needle is described by an orientation
in addition to its position. Nevertheless, the first game gives us an idea for how to
solve this problem: once we fix a position for the center of the needle, its collection of
different possible orientations sweep out a circle (Figure 2.10 (left)).

(x, y) (x) 

1 – x 

1 

x 

y 

FIGURE 2.10 (Left) Once we fix a point for the center of the needle (shown as a red
dot), its collection of possible orientations sweep out a circle. In the circle on the left,
the needle will always lie within the dark brown panel, regardless of its orientation.
In the circle on the right, one of the two needles lies within the dark brown panel,
whereas another is shown crossing over into the adjacent panel. (Right) Once we fix a
point (x, y) for the center of the needle, there is a critical angle a(x) such that all angles
between �a(x) and a(x) will cause the needle to cross over into the next panel. In this
figure, the length of the needle is equal to the width of the panel.

The probability that the player wins depends on the length of the needle with respect
to the distance between wooden panels. We will assume that both of these lengths are
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equal to 2, and we will find the probability of a loss instead of a win. To this end, we
first ask a simpler question: if the center of the needle were to land in the same place
every time, then what is the likelihood that the needle crosses a panel?

To address this question, let’s map the panel into which the needle falls onto a
coordinate plane, with the y-axis dividing the panel into two smaller panels of width
1 (Figure 2.10 (right)). If the center of the needle lands at position (x, y) with x > 0,
then its orientation can be described by an angle q, where q ranges from �p/2 to p/2
radians. If q = 0, then the needle will cross the line y = 1; if q = p/2, then the needle
will not cross the line y = 1. Yet more importantly, since the needle’s center position is
fixed, there must be some critical angle a(x) such that the needle always touches this
line if �a(x)  q  a(x) . If the needle is dropped randomly, then any value of q is
equally likely, and so we obtain that the probability of a loss given this position of the
needle is equal to 2 · a(x)/p.

Following the same reasoning, the needle can take any position x with equal proba-
bility. To find the probability of a loss, Pr(loss), we must therefore compute an “average”
of the values 2 · a(x)/p as x continuously ranges from �1 to 1. This average can be
represented using an integral,

Pr(loss) =

R 1

�1
2 · a(x)

p
dx

1� (�1)
=
R 1

�1
a(x)

p
dx = 2

R 1

0
a(x)

p
dx .

Revisiting Figure 2.10 (right), applying some basic trigonometry tells us that cos a(x)
is equal to 1� x, so that a(x) = arccos(1� x). After making this substitution into the
above equation — and consulting our dusty calculus textbook — Pr(loss) must be equal
to 2/p. It is not difficult to see that this probability will be the same when the needle is
dropped onto any number of wooden panels.

But what does Buffon’s needle have to do with randomized algorithms? In 1812,
none other than Laplace pointed out that Buffon’s needle could be used to approxi-
mate p, and the world’s first Monte Carlo algorithm was born. Specifically, we can
approximate the probability Pe of a loss empirically by dully flipping a needle into the air
thousands of times (or asking a computer to do it for us). Once we have computed this
empirical probability, we can conclude that Pe is approximately equal to 2/p, and thus

p ⇡ 2
Pe

.
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STOP and Think: How does this approximation change in the following cases?

1. The needle is shorter than the width between panels.

2. The needle is longer than the width between panels.

Complications in motif finding

Motif finding becomes difficult if the background nucleotide distribution in the sam-
ple is skewed. In this case, searching for k-mers with the minimum score or entropy may
lead to a biologically irrelevant motif composed from the most frequent nucleotides in
the sample. For example, if A has frequency 85% and T, G, and C have frequencies of
5%, then k-mer AA...AA may represent a motif with minimum score, thus disguising
biologically relevant motifs. For example, the relevant motif GCCG with score 5 in the
example below loses out to the motif aaaa with score 1.

taaaaGTCGa
acGCTGaaaa

Dna aaaaGCCTat
aCCCGaataa
agaaaaGGCG

To find biologically relevant motifs in samples with biased nucleotide frequencies, you
may therefore want to use a generalization of entropy called “relative entropy” (see
DETOUR: Relative Entropy).PAGE 112

Another complication in motif finding is that many motifs are best represented
in a different alphabet than the alphabet of 4 nucleotides. Let W denote either A or
T, S denote either G or C, K denote either G or T, and Y denote either C or T. Now,
consider the motif CSKWYWWATKWATYYK, which represents the CSRE motif in yeast
(recall Figure 2.3 from page 75). This strong motif in a hybrid alphabet corresponds to
211 different motifs in the standard 4-letter alphabet of nucleotides. However, each of
these 211 motifs is too weak to be found by the algorithms we have considered in this
chapter.

Relative entropy

Given a collection of strings Dna, the relative entropy of a 4⇥ k profile matrix P = (pr,j)

is defined as
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k

Â
j=1

Â
r2{A,C,G,T}

pr,j · log2(pr,j/br) =

k

Â
j=1

Â
r2{A,C,G,T}

pr,j · log2(pr,j)�
k

Â
j=1

Â
r2{A,C,G,T}

pr,j · log2(br) ,

where br is the frequency of nucleotide r in Dna. Note that the sum in the expression for
entropy is preceded by a negative sign (�Âk

j=1 Âr2{A,C,G,T} pr,j · log2(pr,j)), whereas the
sum on the left side of the relative entropy equation does not have this negative sign.
Therefore, although we minimized the entropy of a motif matrix, we will now attempt
to maximize the relative entropy.

The term �Âk
j=1 Âr2{A,C,G,T} pr,j · log2(br) is called the cross-entropy of the profile

matrix P; note that the relative entropy of a profile matrix is simply the difference
between the profile’s cross-entropy and its entropy. For example, the relative entropy
for the motif GCCG in the example from DETOUR: Complications in Motif Finding PAGEPAGE 112112
is equal to 9.85� 3.53 = 6.32, as shown below. In this example, bA = 0.5, bC = 0.18,
bG = 0.2, and bT = 0.12.

G T C G
G C T G

Motifs G C C T
c C C G
G G C G

PROFILE(Motifs)

A: 0.0 0.0 0.0 0.0
C: 0.2 0.6 0.8 0.0
G: 0.8 0.2 0.0 0.8
T: 0.0 0.2 0.2 0.2

Entropy 0.72 + 1.37 + 0.72 + 0.72 = 3.53
Cross-entropy 2.35 + 2.56 + 2.47 + 2.47 = 9.85

For the more conserved but irrelevant motif aaaa, the relative entropy is equal to
4.18� 0.72 = 3.46, as shown below. Thus, GCCG loses to aaaa with respect to entropy
but wins with respect to relative entropy.
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a a a a
a a a a

Motifs a a a a
a t a a
a a a a

PROFILE(Motifs)

A: 1.0 0.8 1.0 1.0
C: 0.0 0.0 0.0 0.0
G: 0.0 0.0 0.0 0.0
T: 0.0 0.2 0.0 0.0

Entropy 0.0 + 0.72 + 0.0 + 0.0 = 0.72
Cross-entropy 0.94 + 1.36 + 0.94 + 0.94 = 4.18

114



W H I C H D N A PAT T E R N S P L AY T H E R O L E O F M O L E C U L A R C L O C K S ?

Bibliography Notes

Konopka and Benzer, 1971 bred flies with abnormally short (19 hours) and long (28
hours) circadian rhythms and then traced these abnormalities to a single gene. Harmer
et al., 2000 discovered the evening transcription factor binding site that orchestrates the
circadian clock in plants. Excellent coverage of this discovery is given by Cristianini
and Hahn, 2006. Park et al., 2003 found a transcription factor that mediates the hypoxic
response of Mycobacterium tuberculosis.

Hertz and Stormo, 1999 described the first greedy algorithm for motif finding. The
general framework for Gibbs sampling was described by Geman and Geman, 1984
and was named Gibbs sampling in reference to its similarities with some approaches
in statistical mechanics (Josiah Willard Gibbs was one of the founders of statistical
mechanics). Lawrence et al., 1993 adapted Gibbs sampling for motif finding.
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Exploding Newspapers

Imagine that we stack a hundred copies of the June 27, 2000 edition of the New York Times
on a pile of dynamite, and then we light the fuse. We ask you to further suspend your
disbelief and assume that the newspapers are not all incinerated but instead explode
cartoonishly into smoldering pieces of confetti. How could we use the tiny snippets of
newspaper to figure out what the news was on June 27, 2000? We will call this crazy
conundrum the Newspaper Problem (see Figure 3.1).

FIGURE 3.1 Don’t try this at home! Crazy as it may seem, the Newspaper Problem
serves as an analogy for the computational framework of genome assembly.

The Newspaper Problem is even more difficult than it may seem. Because we had
multiple copies of the same edition of the newspaper, and because we undoubtedly lost
some information in the blast, we cannot simply glue together one of the newspaper
copies in the same way that we would assemble a jigsaw puzzle. Instead, we need to
use overlapping fragments from different copies of the newspaper to reconstruct the
day’s news, as shown in Figure 3.2.

Fine, you ask, but what do exploding newspapers have to do with biology? Determining
the order of nucleotides in a genome, or genome sequencing, presents a fundamental
task in bioinformatics. Genomes vary in length; your own genome is roughly 3 billion
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FIGURE 3.2 In the Newspaper Problem, we need to use overlapping shreds of paper to
figure out the news.

nucleotides long, whereas the genome of Amoeba dubia, an amorphous unicellular
organism, is approximately 200 times longer! This unicellular organism competes with
the rare Japanese flower Paris japonica for the title of species with the longest genome.

The first sequenced genome, belonging to a fX174 bacterial phage (i.e., a virus that
preys on bacteria), had only 5,386 nucleotides and was completed in 1977 by Frederick
Sanger. Four decades after this Nobel Prize-winning discovery, genome sequencing
has raced to the forefront of bioinformatics research, as the cost of genome sequencing
plummeted. Because of the decreasing cost of sequencing, we now have thousands of
sequenced genomes, including those of many mammals (Figure 3.3).

To sequence a genome, we must clear some practical hurdles. The largest obstacle is
the fact that biologists still lack the technology to read the nucleotides of a genome from
beginning to end in the same way that you would read a book. The best they can do
is sequence much shorter DNA fragments called reads. The reasons why researchers
can sequence small pieces of DNA but not long genomes warrant their own discussion
in DETOUR: A Short History of DNA Sequencing Technologies. In this chapter, ourPAGEPAGE 170170
aim is to turn an apparent handicap into a useful tool for assembling the genome back
together.

The traditional method for sequencing genomes is described as follows. Researchers
take a small tissue or blood sample containing millions of cells with identical DNA,
use biochemical methods to break the DNA into fragments, and then sequence these
fragments to produce reads (Figure 3.4). The difficulty is that researchers do not know
where in the genome these reads came from, and so they must use overlapping reads
to reconstruct the genome. Thus, putting a genome back together from its reads, or
genome assembly, is just like the Newspaper Problem.

Even though researchers have sequenced many genomes, a giant genome like that
of Amoeba dubia still remains beyond the reach of modern sequencing technologies. You
might guess that the barrier to sequence such a genome would be experimental, but
that is not true; biologists can easily generate enough reads to analyze a large genome,
but assembling these reads still presents a major computational challenge.
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FIGURE 3.3 The first mammals with sequenced genomes.

Multiple identical 
copies of a genome

AGAATATCASequence the reads

Shatter the genome 
into reads

Assemble the 
genome using 
overlapping reads

...TGAGAATATCA...

  AGAATATCA
 GAGAATATC
TGAGAATAT

GAGAATATCTGAGAATAT

FIGURE 3.4 In DNA sequencing, many identical copies of a genome are broken in
random locations to generate short reads, which are then sequenced and assembled
into the nucleotide sequence of the genome.
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The String Reconstruction Problem

Genome assembly is more difficult than you think

Before we introduce a computational problem modeling genome assembly, we will take
a moment to discuss a few practical complications that make genome assembly more
difficult than the Newspaper Problem.

First, DNA is double-stranded, and we have no way of knowing a priori which
strand a given read derives from, meaning that we will not know whether to use a read
or its reverse complement when assembling a particular strand of a genome. Second,
modern sequencing machines are not perfect, and the reads that they generate often
contain errors. Sequencing errors complicate genome assembly because they prevent us
from identifying all overlapping reads. Third, some regions of the genome may not be
covered by any reads, making it impossible to reconstruct the entire genome.

Since the reads generated by modern sequencers often have the same length, we
may safely assume that reads are all k-mers for some value of k. The first part of this
chapter will assume an ideal — and unrealistic — situation in which all reads come
from the same strand, have no errors, and exhibit perfect coverage, so that every k-mer
substring of the genome is generated as a read. Later, we will show how to relax these
assumptions for more realistic datasets.

Reconstructing strings from k-mers

We are now ready to define a computational problem modeling genome assembly.
Given a string Text, its k-mer composition COMPOSITIONk(Text) is the collection of all
k-mer substrings of Text (including repeated k-mers). For example,

COMPOSITION3(TATGGGGTGC) = {ATG,GGG,GGG,GGT,GTG,TAT,TGC,TGG}.

Note that we have listed k-mers in lexicographic order (i.e., how they would appear
in a dictionary) rather than in the order of their appearance in TATGGGGTGC. We have
done this because the correct ordering of reads is unknown when they are generated.

String Composition Problem:
Generate the k-mer composition of a string.

Input: A string Text and an integer k.
Output: COMPOSITIONk(Text), where the k-mers are arranged in lexico-
graphic order.

3A
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Solving the String Composition Problem is a straightforward exercise, but in order to
model genome assembly, we need to solve its inverse problem.

String Reconstruction Problem:
Reconstruct a string from its k-mer composition.

Input: An integer k and a collection Patterns of k-mers.
Output: A string Text with k-mer composition equal to Patterns (if such a
string exists).

Before we ask you to solve the String Reconstruction Problem, let’s consider the follow-
ing example of a 3-mer composition:

AAT ATG GTT TAA TGT

The most natural way to solve the String Reconstruction Problem is to mimic the
solution of the Newspaper Problem and “connect” a pair of k-mers if they overlap in
k� 1 symbols. For the above example, it is easy to see that the string should start with
TAA because there is no 3-mer ending in TA. This implies that the next 3-mer in the
string should start with AA. There is only one 3-mer satisfying this condition, AAT:

TAA
AAT

In turn, AAT can only be extended by ATG, which can only be extended by TGT, and so
on, leading us to reconstruct TAATGTT:

TAA
AAT
ATG
TGT
GTT

TAATGTT

It looks like we are finished with the String Reconstruction Problem and can let you
move on to the next chapter. To be sure, let’s consider another 3-mer composition:

AAT ATG ATG ATG CAT CCA GAT GCC GGA GGG GTT TAA TGC TGG TGT
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EXERCISE BREAK: Reconstruct a string with this 3-mer composition.

If we start again with TAA, then the next 3-mer in the string should start with AA, and
there is only one such 3-mer, AAT. In turn, AAT can only be extended by ATG:

TAA
AAT
ATG

TAATG

ATG can be extended either by TGC, or TGG, or TGT. Now we must decide which of
these 3-mers to choose. Let’s select TGT:

TAA
AAT
ATG
TGT

TAATGT

After TGT, our only choice is GTT:

TAA
AAT
ATG
TGT
GTT

TAATGTT

Unfortunately, now we are stuck at GTT because no 3-mers in the composition start
with TT! We could try to extend TAA to the left, but no 3-mers in the composition end
with TA.

You may have found this trap on your own and already discovered how to escape it.
Like a good chess player, if you think a few steps ahead, then you would never extend
ATG by TGT until reaching the end of the genome. With this thought in mind, let’s take
a step back, extending ATG by TGC instead:

TAA
AAT
ATG
TGC

TAATGC
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Continuing the process, we obtain the following assembly:

TAA
AAT
ATG
TGC
GCC
CCA
CAT
ATG
TGG
GGA
GAT
ATG
TGT
GTT

TAATGCCATGGATGTT

Yet this assembly is incorrect because we have only used fourteen of the fifteen 3-mers
in the composition (we omitted GGG), making our reconstructed genome one nucleotide
too short.

Repeats complicate genome assembly

The difficulty in assembling this genome arises because ATG is repeated three times in
the 3-mer composition, which causes us to have the three choices TGG, TGC, and TGT
by which to extend ATG. Repeated substrings in the genome are not a serious problem
when we have just fifteen reads, but with millions of reads, repeats make it much more
difficult to “look ahead” and construct the correct assembly.

If you followed DETOUR: Probabilities of Patterns in a String from Chapter 1, PAGEPAGE 5252
you know how unlikely it is to witness a long repeat in a randomly generated sequence
of nucleotides. You also know that real genomes are anything but random. Indeed,
approximately 50% of the human genome is made up of repeats, e.g., the approximately
300 nucleotide-long Alu sequence is repeated over a million times, with only a few
nucleotides inserted/deleted/substituted each time (see DETOUR: Repeats in the PAGEPAGE 172172
Human Genome).

An analogy illustrating the difficulty of assembling a genome with many repeats is
the Triazzle® jigsaw puzzle (Figure 3.5). People usually put together jigsaw puzzles by
connecting matching pieces. However, every piece in the Triazzle matches more than
one other piece; in Figure 3.5, each frog appears several times. If you proceed carelessly,
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then you will likely match most of the pieces but fail to fit the remaining ones. And yet
the Triazzle has only 16 pieces, which should give us pause about assembling a genome
from millions of reads.

FIGURE 3.5 Each Triazzle has only sixteen pieces but carries a warning: “It’s Harder
than it Looks!”

EXERCISE BREAK: Design a strategy for assembling the Triazzle puzzle.

String Reconstruction as a Walk in the Overlap Graph

From a string to a graph

Repeats in a genome necessitate some way of looking ahead to see the correct assembly
in advance. Returning to our previous example, you may have already found that
TAATGCCATGGGATGTT is a solution to the String Reconstruction Problem for the col-
lection of fifteen 3-mers in the last section, as illustrated below. Note that we use a
different color for each interval of the string between occurrences of ATG.
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TAA
AAT
ATG
TGC
GCC
CCA
CAT
ATG
TGG
GGG
GGA
GAT
ATG
TGT
GTT

TAATGCCATGGGATGTT

STOP and Think: Is this the only solution to the String Reconstruction Problem
for this collection of 3-mers?

In Figure 3.6, consecutive 3-mers in TAATGCCATGGGATGTT are linked together to form
the genome path.

TAA ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTTAAT

FIGURE 3.6 The fifteen color-coded 3-mers making up TAATGCCATGGGATGTT are
joined into the genome path according to their order in the genome.

String Spelled by a Genome Path Problem:
Reconstruct a string from its genome path.

Input: A sequence of k-mers Pattern1, . . . , Patternn such that the last k � 1
symbols of Patterni are equal to the first k � 1 symbols of Patterni+1 for
1  n� 1.
Output: A string Text of length k + n� 1 such that the i-th k-mer in Text is
equal to Patterni (for 1  i  n).

3B

Reconstructing a genome from its genome path is easy: as we proceed from left to right,
the 3-mers “spell” out TAATGCCATGGGATGTT, adding one new symbol to the genome
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at each new 3-mer. Unfortunately, constructing this string’s genome path requires us to
know the genome in advance.

STOP and Think: Could you construct the genome path if you knew only the
genome’s 3-mer composition?

In this chapter, we will use the terms prefix and suffix to refer to the first k � 1 nu-
cleotides and last k� 1 nucleotides of a k-mer, respectively. For example, PREFIX(TAA) =
TA and SUFFIX(TAA) = AA. We note that the suffix of a 3-mer in the genome path is
equal to the prefix of the following 3-mer in the path. For example, SUFFIX(TAA) =

PREFIX(AAT) = AA in the genome path for TAATGCCATGGGATGTT.
This observation suggests a method of constructing a string’s genome path from

its k-mer composition: we will use an arrow to connect any k-mer Pattern to a k-mer
Pattern’ if the suffix of Pattern’ is equal to the prefix of Pattern’.

STOP and Think: Apply this rule to the 3-mer composition of
TAATGCCATGGGATGTT. Are you able to reconstruct the genome path of
TAATGCCATGGGATGTT?

If we follow the rule of connecting two 3-mers with an arrow every time the suffix of
one is equal to the prefix of the other, then we will connect all consecutive 3-mers in
TAATGCCATGGGATGTT as in Figure 3.6. However, because we don’t know this genome
in advance, we wind up having to connect many other pairs of 3-mers as well. For
example, each of the three occurrences of ATG should be connected to TGC, TGG, and
TGT, as shown in Figure 3.7.

TAA ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTTAAT

FIGURE 3.7 The graph showing all connections between nodes representing the 3-mer
composition of TAATGCCATGGGATGTT. This graph has fifteen nodes and 25 edges.
Note that the genome can still be spelled out by walking along the horizontal edges
from TAA to GTT.
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Figure 3.7 presents an example of a graph, or a network of nodes connected by
edges. This particular graph is an example of a directed graph, whose edges have a
direction and are represented by arrows (as opposed to undirected graphs whose edges
do not have directions). If you are unfamiliar with graphs, see DETOUR: Graphs. PAGE 173

The genome vanishes

The genome can still be traced out in the graph in Figure 3.7 by following the horizontal
path from TAA to GTT. But in genome sequencing, we do not know in advance how to
correctly order reads. Therefore we will arrange the 3-mers lexicographically, which
produces the overlap graph shown in Figure 3.8. The genome path has disappeared!

TAAATG TGCGCCCCACATATG TGGGGGGGAGATATG TGTGTTAAT

FIGURE 3.8 The same graph as the one in Figure 3.7 with 3-mers ordered lexicographi-
cally. The path through the graph representing the correct assembly is now harder to
see.

The genome path may have disappeared to the naked eye, but it must still be there,
since we have simply rearranged the nodes of the graph. Indeed, Figure 3.9 (top)
highlights the genome path spelling out TAATGCCATGGGATGTT. However, if we had
given you this graph to begin with, you would have needed to find a path through
the graph visiting each node exactly once; such a path “explains” all the 3-mers in the
3-mer composition of the genome. Although finding such a path is currently just as
difficult as trying to assemble the genome by hand, the graph nevertheless gives us a
nice way of visualizing the overlap relationships between reads.

STOP and Think: Can any other strings be reconstructed by following a path
visiting all the nodes in Figure 3.8?
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To generalize the construction of the graph in Figure 3.8 to an arbitrary collection of
k-mers Patterns, we form a node for each k-mer in Patterns and connect k-mers Pattern
and Pattern’ by a directed edge if SUFFIX(Pattern) = PREFIX(Pattern’). The resulting
graph is called the overlap graph on these k-mers, denoted OVERLAP(Patterns).

Overlap Graph Problem:
Construct the overlap graph of a collection of k-mers.

Input: A collection Patterns of k-mers.
Output: The overlap graph OVERLAP(Patterns).

3C

TAAATG TGCGCCCCACATATG TGGGGGGGAGATATG TGTGTTAAT

TAAATG TGCGCCCCACATATG TGGGGGGGAGATATG TGTGTTAAT

FIGURE 3.9 (Top) The genome path spelling out TAATGCCATGGGATGTT, highlighted
in the overlap graph. (Bottom) Another Hamiltonian path in the overlap graph spells
the genome TAATGGGATGCCATGTT. These two genomes differ by exchanging the
positions of CC and GG but have the same 3-mer composition.
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Two graph representations

If you have never worked with graphs before, you may be wondering how to represent
graphs in your programs. To make a brief digression from our discussion of genome
assembly, consider the graph in Figure 3.10 (top). We can move around this graph’s
nodes without changing the graph (e.g., the graphs in Figure 3.7 and Figure 3.8 are
the same). As a result, when we are representing a graph computationally, the only
information we need to store is the pair of nodes that each edge connects.

There are two standard ways of representing a graph. For a directed graph with
n nodes, the n ⇥ n adjacency matrix (Ai,j) is defined by the following rule: Ai,j = 1
if a directed edge connects node i to node j, and Ai,j = 0 otherwise. Another (more
memory-efficient) way of representing a graph is to use an adjacency list, for which we
simply list all nodes connected to each node (see Figure 3.10).

Graph Adjacency Matrix Adjacency List

 c 

 e 

 d 

 a 

 b 

a b c d e
a 0 1 0 0 1 a is adjacent to b and e
b 0 0 1 1 0 b is adjacent to c and d
c 1 0 0 0 0 c is adjacent to a
d 1 0 0 0 0 d is adjacent to a
e 0 1 1 1 0 e is adjacent to b, c, and d

Graph Adjacency Matrix Adjacency List

 c 

 x 

 a 

 b 

a b c x
a 0 1 0 1 a is adjacent to b and x
b 0 0 1 1 b is adjacent to c and x
c 1 0 0 0 c is adjacent to a
x 1 1 1 1 x is adjacent to a, b, c, and x

FIGURE 3.10 (Top) A graph with five nodes and nine edges, followed by its adjacency
matrix and adjacency list. (Bottom) The graph produced by gluing nodes d and e into a
single node x, along with the new graph’s adjacency matrix and adjacency list.
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Hamiltonian paths and universal strings

We now know that to solve the String Reconstruction Problem, we are looking for a
path in the overlap graph that visits every node exactly once. A path in a graph visiting
every node once is called a Hamiltonian path, in honor of the Irish mathematician
William Hamilton (see DETOUR: The Icosian Game). As Figure 3.9 illustrates, a graphPAGE 175
may have more than one Hamiltonian path.

Hamiltonian Path Problem:
Construct a Hamiltonian path in a graph.

Input: A directed graph.
Output: A path visiting every node in the graph exactly once (if such a path
exists).

We do not ask you to solve the Hamiltonian Path Problem yet, since it is not clear how
we could design an efficient algorithm for it. Instead, we want you to meet Nicolaas de
Bruijn, a Dutch mathematician. In 1946, de Bruijn was interested in solving a purely
theoretical problem, described as follows. A binary string is a string composed only of
0’s and 1’s; a binary string is k-universal if it contains every binary k-mer exactly once.
For example, 0001110100 is a 3-universal string, as it contains each of the eight binary
3-mers (000, 001, 011, 111, 110, 101, 010, and 100) exactly once.

Finding a k-universal string is equivalent to solving the String Reconstruction Prob-
lem when the k-mer composition is the collection of all binary k-mers. Thus, finding
a k-universal string is equivalent to finding a Hamiltonian path in the overlap graph
formed on all binary k-mers (Figure 3.11). Although the Hamiltonian path in Figure 3.11
can easily be found by hand, de Bruijn was interested in constructing k-universal strings
for arbitrary values of k. For example, to find a 20-universal string, you would have
to consider a graph with over a million nodes. It is absolutely unclear how to find a
Hamiltonian path in such a huge graph, or even whether such a path exists!

Instead of searching for Hamiltonian paths in huge graphs, de Bruijn developed a
completely different (and somewhat non-intuitive) way of representing a k-mer compo-
sition using a graph. Later in this chapter, we will learn how he used this method to
construct universal strings.

EXERCISE BREAK: Construct a 4-universal string. How many different 4-
universal strings can you construct?
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000 001 010 011 100 101 111 110 

FIGURE 3.11 A Hamiltonian path highlighted in the overlap graph of all binary 3-mers.
This path spells out the 3-universal binary string 0001110100.

Another Graph for String Reconstruction

Gluing nodes and de Bruijn graphs

Let’s again represent the genome TAATGCCATGGGATGTT as a sequence of its 3-mers:

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT

This time, instead of assigning these 3-mers to nodes, we will assign them to edges, as
shown in Figure 3.12. You can once again reconstruct the genome by following this path
from left to right, adding one new nucleotide at each step. Since each pair of consecutive
edges represent consecutive 3-mers that overlap in two nucleotides, we will label each
node of this graph with a 2-mer representing the overlapping nucleotides shared by the
edges on either side of the node. For example, the node with incoming edge CAT and
outgoing edge ATG is labeled AT.

TA AA AT TG GC CC CA AT TG GG GG GA AT TG GT TT
TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT

FIGURE 3.12 Genome TAATGCCATGGGATGTT represented as a path with edges
(rather than nodes) labeled by 3-mers and nodes labeled by 2-mers.

Nothing seems new here until we start gluing identically labeled nodes. In Fig-
ure 3.13 (top panels), we bring the three AT nodes closer and closer to each other until
they have been glued into a single node. Note that there are also three nodes labeled by
TG, which we glue together in Figure 3.13 (middle panels). Finally, we glue together
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the two nodes labeled GG (GG and GG), as shown in Figure 3.13 (bottom panels), which
produces a special type of edge called a loop connecting GG to itself.

The number of nodes in the resulting graph (Figure 3.13 (bottom right)) has reduced
from 16 to 11, while the number of edges stayed the same. This graph is called the de
Bruijn graph of TAATGCCATGGGATGTT, denoted DEBRUIJN3(TAATGCCATGGGATGTT).
Note that this de Bruijn graph has three different edges connecting AT to TG, represent-
ing three copies of the repeat ATG.

In general, given a genome Text, PATHGRAPHk(Text) is the path consisting of
|Text| � k + 1 edges, where the i-th edge of this path is labeled by the i-th k-mer in
Text and the i-th node of the path is labeled by the i-th (k � 1)-mer in Text. The
de Bruijn graph DEBRUIJNk(Text) is formed by gluing identically labeled nodes in
PATHGRAPHk(Text).

De Bruijn Graph from a String Problem:
Construct the de Bruijn graph of a string.

Input: A string Text and an integer k.
Output: DEBRUIJNk(Text).

3D

STOP and Think: Consider the following questions.

1. If we gave you the de Bruijn graph DEBRUIJNk(Text) without giving you
Text, could you reconstruct Text?

2. Construct the de Bruijn graphs DEBRUIJN2(Text), DEBRUIJN3(Text), and
DEBRUIJN4(Text) for Text = TAATGCCATGGGATGTT. What do you notice?

3. How does the graph DEBRUIJN3(TAATGCCATGGGATGTT) compare to
DEBRUIJN3(TAATGGGATGCCATGTT)?

CHARGING STATION (The Effect of Gluing on the Adjacency Matrix): Fig-
ure 3.10 (bottom) shows how the gluing operation affects the adjacency matrix
and adjacency list of a graph. Check out this Charging Station to see how gluing
works for a de Bruijn graph.

PAGE
164
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FIGURE 3.13 (Top panels) Bringing the three nodes labeled AT in Figure 3.12 closer
(left) and closer (middle) to each other to eventually glue them into a single node (right).
(Middle panels) Bringing the three nodes labeled TG closer (left) and closer (middle) to
each other to eventually glue them into a single node (right). (Bottom panels) Bringing
the two nodes labeled GG closer (left) and closer (middle) to each other to eventually
glue them into a single node (right). The path with 16 nodes from Figure 3.12 has been
transformed into the graph DEBRUIJN3(TAATGCCATGGGATGTT) with eleven nodes.
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Walking in the de Bruijn Graph

Eulerian paths

Even though we have glued together nodes to form the de Bruijn graph, we have not
changed its edges, and so the path from TA to TT reconstructing the genome is still
hiding in DEBRUIJN3(TAATGCCATGGGATGTT) (Figure 3.14), although this path has
become “tangled” after gluing. Therefore, solving the String Reconstruction Problem
reduces to finding a path in the de Bruijn graph that visits every edge exactly once. Such
a path is called an Eulerian Path in honor of the great mathematician Leonhard Euler
(pronounced “oiler”).

Eulerian Path Problem:
Construct an Eulerian path in a graph.

Input: A directed graph.
Output: A path visiting every edge in the graph exactly once (if such a path
exists).
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FIGURE 3.14 The path fromTA toTT spelling out the genome TAATGCCATGGGATGTT
has become “tangled” in the de Bruijn graph. The numbering of the fifteen edges of
the path indicates an Eulerian path reconstructing the genome.
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We now have an alternative way of solving the String Reconstruction Problem that
amounts to finding an Eulerian path in the de Bruijn graph. But wait — to construct the
de Bruijn graph of a genome, we glued together nodes of PATHGRAPHk(Text). However,
constructing this graph requires us to know the correct ordering of the k-mers in Text!

STOP and Think: Can you construct DEBRUIJNk(Text) if you don’t know Text
but you do know its k-mer composition?

Another way to construct de Bruijn graphs

Figure 3.15 (top) represents the 3-mer composition of TAATGCCATGGGATGTT as a com-
position graph COMPOSITIONGRAPH3(TAATGCCATGGGATGTT). As with the de Bruijn
graph, each 3-mer is assigned to a directed edge, with its prefix labeling the first node
of the edge and its suffix labeling the second node of the edge. However, the edges of
this graph are isolated, meaning that no two edges share a node.

STOP and Think: Given Text = TAATGCCATGGGATGTT, glue identically la-
beled nodes in COMPOSITIONGRAPH3(Text). How does the resulting graph dif-
fer from DEBRUIJN3(Text) obtained by gluing the identically labeled nodes in
PATHGRAPH3(Text)?

Figure 3.15 shows how COMPOSITIONGRAPH3(Text) changes after gluing nodes with
the same label, for Text = TAATGCCATGGGATGTT. These operations glue the fif-
teen isolated edges in COMPOSITIONGRAPH3(Text) into the path PATHGRAPH3(Text).
Follow-up gluing operations proceed in exactly the same way as when we glued nodes
of PATHGRAPH3(Text), which results in DEBRUIJN3(Text). Thus, we can construct the
de Bruijn graph from this genome’s 3-mer composition without knowing the genome!

For an arbitrary string Text, we define COMPOSITIONGRAPHk(Text) as the graph
consisting of |Text|� k + 1 isolated edges, where edges are labeled by k-mers in Text;
every edge labeled by a k-mer edge connects nodes labeled by the prefix and suffix of
this k-mer. The graph COMPOSITIONGRAPHk(Text) is just a collection of isolated edges
representing the k-mers in the k-mer composition of Text, meaning that we can construct
COMPOSITIONGRAPHk(Text) from the k-mer composition of Text. Gluing nodes with
the same label in COMPOSITIONGRAPHk(Text) produces DEBRUIJNk(Text).

Given an arbitrary collection of k-mers Patterns (where some k-mers may appear
multiple times), we define COMPOSITIONGRAPH(Patterns) as a graph with |Patterns|
isolated edges. Every edge is labeled by a k-mer from Patterns, and the starting and
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FIGURE 3.15 Gluing some identically labeled nodes transforms the graph
COMPOSITIONGRAPH3(TAATGCCATGGGATGTT) (top) into the graph
PATHGRAPH3(TAATGCCATGGGATGTT) (bottom). Gluing all identically labeled
nodes produces DEBRUIJN3(TAATGCCATGGGATGTT) from Figure 3.14.

ending nodes of an edge are labeled by the prefix and suffix of the k-mer labeling
that edge. We then define DEBRUIJN(Patterns) by gluing identically labeled nodes in
COMPOSITIONGRAPH(Patterns), which yields the following algorithm.

DEBRUIJN(Patterns)
represent every k-mer in Patterns as an isolated edge between its prefix and suffix
glue all nodes with identical labels, yielding the graph DEBRUIJN(Patterns)
return DEBRUIJN(Patterns)
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Constructing de Bruijn graphs from k-mer composition

Constructing the de Bruijn graph by gluing identically labeled nodes will help us later
when we generalize the notion of de Bruijn graph for other applications. We will now
describe another useful way to construct de Bruijn graphs without gluing.

Given a collection of k-mers Patterns, the nodes of DEBRUIJNk(Patterns) are simply
all unique (k� 1)-mers occurring as a prefix or suffix of 3-mers in Patterns. For example,
say we are given the following collection of 3-mers:

AAT ATG ATG ATG CAT CCA GAT GCC GGA GGG GTT TAA TGC TGG TGT

Then the set of eleven unique 2-mers occurring as a prefix or suffix in this collection is as
follows:

AA AT CA CC GA GC GG GT TA TG TT

For every k-mer in Patterns, we connect its prefix node to its suffix node by a directed
edge in order to produce DEBRUIJN(Patterns). You can verify that this process produces
the same de Bruijn graph that we have been working with (Figure 3.16).

AT GA TACAAA GG TGGT TTGCCC

FIGURE 3.16 The de Bruijn graph above is the same as the graph in Figure 3.14,
although it has been drawn differently.

De Bruijn Graph from k-mers Problem:
Construct the de Bruijn graph of a collection of k-mers.

Input: A collection of k-mers Patterns.
Output: The de Bruijn graph DEBRUIJN(Patterns).

3E3E
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De Bruijn graphs versus overlap graphs

We now have two ways of solving the String Reconstruction Problem. We can either
find a Hamiltonian path in the overlap graph or find an Eulerian path in the de Bruijn
graph (Figure 3.17). Your inner voice may have already started complaining: was it
really worth my time to learn two slightly different ways of solving the same problem? After all,
we have only changed a single word in the statements of the Hamiltonian and Eulerian
Path Problems, from finding a path visiting every node exactly once to finding a path
visiting every edge exactly once.

TAAATG TGCGCCCCACATATG TGGGGGGGAGATATG TGTGTTAAT

AT
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TGC

GCCCCA

CAT

ATG
TGG

GGGGGA

GAT

ATG
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GG

TG GT TT

GC

CC

ATG
TAA TGT GTTAAT

FIGURE 3.17 The overlap graph (top) and de Bruijn graph (bottom) for the same
collection of 3-mers.

STOP and Think: Which graph would you rather work with, the overlap graph
or the de Bruijn graph?
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Our guess is that you would probably prefer working with the de Bruijn graph, since
it is smaller. However, this would be the wrong reason to choose one graph over the
other. In the case of real assembly problems, both graphs will have millions of nodes,
and so all that matters is finding an efficient algorithm for reconstructing the genome.
If we can find an efficient algorithm for the Hamiltonian Path Problem, but not for the
Eulerian path Problem, then you should select the overlap graph even though it looks
more complex.

The choice between these two graphs is the pivotal decision of this chapter. To
help you make this decision, we will ask you to hop onboard our bioinformatics time
machine for a field trip to the 18th Century.

The Seven Bridges of Königsberg

Our destination is 1735 and the Prussian city of Königsberg. This city, which today
is Kaliningrad, Russia, comprised both banks of the Pregel River as well as two river
islands; seven bridges connected these four different parts of the city, as illustrated in
Figure 3.18 (top). Königsberg’s residents enjoyed taking walks, and they asked a simple
question: Is it possible to set out from my house, cross each bridge exactly once, and return
home? Their question became known as the Bridges of Königsberg Problem.

EXERCISE BREAK: Does the Bridges of Königsberg Problem have a solution?

In 1735, Leonhard Euler drew the graph in Figure 3.18 (bottom), which we call Königs-
berg; this graph’s nodes represent the four sectors of the city, and its edges represent
the seven bridges connecting different sectors. Note that the edges of Königsberg are
undirected, meaning that they can be traversed in either direction.

STOP and Think: Redefine the Bridges of Königsberg Problem as a question
about the graph Königsberg.

We have already defined an Eulerian path as a path in a graph traversing each edge of a
graph exactly once. A cycle that traverses each edge of a graph exactly once is called
an Eulerian cycle, and we say that a graph containing such a cycle is Eulerian. Note
that an Eulerian cycle in Königsberg would immediately provide the residents of the
city with the walk they had wanted. We now can redefine the Bridges of Königsberg
Problem as an instance of the following more general problem.
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Eulerian Cycle Problem:
Find an Eulerian cycle in a graph.

Input: A graph.
Output: An Eulerian cycle in this graph, if one exists.

FIGURE 3.18 (Top) A map of Königsberg, adapted from Joachim Bering’s 1613 illus-
tration. The city was made up of four sectors represented by the blue, red, yellow,
and green dots. The seven bridges connecting the different parts of the city have been
highlighted to make them easier to see. (Bottom) The graph Königsberg.
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Euler solved the Bridges of Königsberg Problem, showing that no walk can cross
each bridge exactly once (i.e., the graph Königsberg is not Eulerian), which you may
have already figured out for yourself. Yet his real contribution, and the reason why he is
viewed as the founder of graph theory, a field of study that still flourishes today, is that
he proved a theorem dictating when a graph will have an Eulerian cycle. His theorem
immediately implies an efficient algorithm for constructing an Eulerian cycle in any
Eulerian graph, even one having millions of edges. Furthermore, this algorithm can
easily be extended into an algorithm constructing an Eulerian path (in a graph having
such a path), which will allow us to solve the String Reconstruction Problem by using
the de Bruijn graph.

On the other hand, it turns out that no one has ever been able to find an efficient
algorithm solving the Hamiltonian Path Problem. The search for such an algorithm,
or for a proof that an efficient algorithm does not exist for this problem, is at the heart
of one of the most fundamental unanswered questions in computer science. Com-
puter scientists classify an algorithm as polynomial if its running time can be bounded
by a polynomial in the length of the input data. On the other hand, an algorithm is
exponential if its runtime on some datasets is exponential in the length of the input data.

EXERCISE BREAK: Classify the algorithms that we encountered in Chapter 1
as polynomial or exponential.

Although Euler’s algorithm is polynomial, the Hamiltonian Path Problem belongs to a
special class of problems for which all attempts to develop a polynomial algorithm have
failed (see DETOUR: Tractable and Intractable Problems). Yet instead of trying to PAGE 176
solve a problem that has stumped computer scientists for decades, we will set aside the
overlap graph and instead focus on the de Bruijn graph approach to genome assembly.

For the first two decades following the invention of DNA sequencing methods,
biologists assembled genomes using overlap graphs, since they failed to realize that
the Bridges of Königsberg held the key to DNA assembly (see DETOUR: From Euler PAGE 177
to Hamilton to de Bruijn). Indeed, overlap graphs were used to assemble the human
genome. It took bioinformaticians some time to figure out that the de Bruijn graph,
first constructed to solve a completely theoretical problem, was relevant to genome
assembly. Moreover, when the de Bruijn graph was brought to bioinformatics, it was
considered an exotic mathematical concept with limited practical applications. Today,
the de Bruijn graph has become the dominant approach for genome assembly.
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Euler’s Theorem

We will now explore Euler’s method for solving the Eulerian Cycle Problem. Euler
worked with undirected graphs like Königsberg, but we will consider an analogue of his
algorithm for directed graphs so that his method will apply to genome assembly.

Consider an ant, whom we will call Leo, walking along the edges of an Eulerian
cycle. Every time Leo enters a node of this graph by an edge, he is able to leave this
node by another, unused edge. Thus, in order for a graph to be Eulerian, the number
of incoming edges at any node must be equal to the number of outgoing edges at that
node. We define the indegree and outdegree of a node v (denoted IN(v) and OUT(v),
respectively) as the number of edges leading into and out of v. A node v is balanced
if IN(v)=OUT(v), and a graph is balanced if all its nodes are balanced. Because Leo
must always be able to leave a node by an unused edge, any Eulerian graph must be
balanced. Figure 3.19 shows a balanced graph and an unbalanced graph.

    

FIGURE 3.19 Balanced (left) and unbalanced (right) directed graphs. For the (unbal-
anced) blue node v, IN(v) = 1 and OUT(v) = 2, whereas for the (unbalanced) red
node w, IN(w) = 2 and OUT(w) = 1.

STOP and Think: We now know that every Eulerian graph is balanced; is every
balanced graph Eulerian?

The graph in Figure 3.20 is balanced but not Eulerian because it is disconnected, mean-
ing that some nodes cannot be reached from other nodes. In any disconnected graph,
it is impossible to find an Eulerian cycle. In contrast, we say that a directed graph is
strongly connected if it is possible to reach any node from every other node.
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FIGURE 3.20 A balanced, disconnected graph.

We now know that an Eulerian graph must be both balanced and strongly connected.
Euler’s Theorem states that these two conditions are sufficient to guarantee that an
arbitrary graph is Eulerian. As a result, it implies that we can determine whether a
graph is Eulerian without ever having to draw any cycles.

Euler’s Theorem: Every balanced, strongly connected directed graph is Eulerian.

Proof. Let Graph be an arbitrary balanced and strongly connected directed graph. To
prove that Graph has an Eulerian cycle, place Leo at any node v0 of Graph (the green
node in Figure 3.21), and let him randomly walk through the graph under the condition
that he cannot traverse the same edge twice.

FIGURE 3.21 Leo starts at the green node v0 and walks through a balanced and strongly
connected graph.

If Leo were incredibly lucky — or a genius — then he would traverse each edge ex-
actly once and return back to v0. However, odds are that he will “get stuck" somewhere
before he can complete an Eulerian cycle, meaning that he reaches a node and finds no
unused edges leaving that node.
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STOP and Think: Where is Leo when he gets stuck? Can he get stuck in any
node of the graph or only in certain nodes?

It turns out that the only node where Leo can get stuck is the starting node v0! The
reason why is that Graph is balanced: if Leo walks into any node other than v0 (through
an incoming edge), then he will always be able to escape via an unused outgoing edge.
The only exception to this rule is the starting node v0, since Leo used up one of the
outgoing edges of v0 on his first move. Now, because Leo has returned to v0, the result
of his walk was a cycle, which we call Cycle0 (Figure 3.22 (left)).

1 

2 

3 

4 

FIGURE 3.22 (Left) Leo produces a cycle Cycle0 (formed by green edges) when he
gets stuck at the green node v0. In this case, he has not yet visited every edge in the
graph. (Right) Starting at a new node v1 (shown in blue), Leo first travels along Cycle0,
returning to v1. Note that the blue node v1, unlike the green node v0, has unused
outgoing and incoming edges.

STOP and Think: Is there a way to give Leo different instructions so that he
selects a longer walk through the graph before he gets stuck?

As we mentioned, if Cycle0 is Eulerian, then we are finished. Otherwise, because Graph
is strongly connected, some node on Cycle0 must have unused edges entering it and
leaving it (why?). Naming this node v1, we ask Leo to start at v1 instead of v0 and
traverse Cycle0 (thus returning to v1), as shown in Figure 3.22 (right).

Leo is probably annoyed that we have asked him to travel along the exact same cycle,
since as before, he will eventually return to v1, the node where he started. However,
now there are unused edges starting at this node, and so he can continue walking from
v1, using a new edge each time. The same argument as the one that we used before
implies that Leo must eventually get stuck at v1. The result of Leo’s walk is a new cycle,
Cycle1 (Figure 3.23), which is larger than Cycle0.
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FIGURE 3.23 After traversing the previously constructed green cycle Cycle0, Leo con-
tinues walking and eventually produces a larger cycle Cycle1 formed of both the green
and the blue cycles put together into a single cycle.

If Cycle1 is an Eulerian cycle, then Leo has completed his job. Otherwise, we select
a node v2 in Cycle1 that has unused edges entering it and leaving it (the red node in
Figure 3.24 (left)). Starting at v2, we ask Leo to traverse Cycle1, returning to v2, as
shown in Figure 3.24 (left). Afterwards, he will randomly walk until he gets stuck at v2,
creating an even larger cycle that we name Cycle2.
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FIGURE 3.24 (Left) Starting at a new node v2 (shown in red), Leo first travels along
the previously constructed Cycle1 (shown as green and blue edges). (Right) After
completing the walk through Cycle1, Leo continues randomly walking through the
graph and finally produces an Eulerian cycle.

In Figure 3.24 (right), Cycle2 happens to be Eulerian, although this is certainly not
the case for an arbitrary graph. In general, Leo generates larger and larger cycles at each
iteration, and so we are guaranteed that sooner or later some Cyclem will traverse all
the edges in Graph. This cycle must be Eulerian, and so we (and Leo) are finished.
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STOP and Think: Formulate and prove an analogue of Euler’s Theorem for
undirected graphs.

From Euler’s Theorem to an Algorithm for Finding Eulerian Cycles

Constructing Eulerian cycles

The proof of Euler’s Theorem offers an example of what mathematicians call a con-
structive proof, which not only proves the desired result, but also provides us with a
method for constructing the object we need. In short, we track Leo’s movements until
he inevitably produces an Eulerian cycle in a balanced and strongly connected graph
Graph, as summarized in the following pseudocode.

EULERIANCYCLE(Graph)
form a cycle Cycle by randomly walking in Graph (don’t visit the same edge twice!)
while there are unexplored edges in Graph

select a node newStart in Cycle with still unexplored edges
form Cycle’ by traversing Cycle (starting at newStart) and then randomly walking
Cycle Cycle’

return Cycle

3F

It may not be obvious, but a good implementation of EULERIANCYCLE will work in
linear time. To achieve this runtime speedup, you would need to use an efficient data
structure in order to maintain the current cycle that Leo is building as well the list of
unused edges incident to each node and the list of nodes on the current cycle that have
unused edges.

From Eulerian cycles to Eulerian paths

We can now check if a directed graph has an Eulerian cycle, but what about an Eule-
rian path? Consider the de Bruijn graph in Figure 3.25 (left), which we already know
has an Eulerian path, but which does not have an Eulerian cycle because nodes TA
and TT are not balanced. However, we can transform this Eulerian path into an Eu-
lerian cycle by adding a single edge connecting TT to TA, as shown in Figure 3.25 (right).

STOP and Think: How many unbalanced nodes does a graph with an Eulerian
path have?
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FIGURE 3.25 Transforming an Eulerian path (left) into an Eulerian cycle (right) by adding
an edge.

More generally, consider a graph that does not have an Eulerian cycle but does have
an Eulerian path. If an Eulerian path in this graph connects a node v to a different node
w, then the graph is nearly balanced, meaning that all its nodes except v and w are
balanced. In this case, adding an extra edge from w to v transforms the Eulerian path
into an Eulerian cycle. Thus, a nearly balanced graph has an Eulerian path if and only if
adding an edge between its unbalanced nodes makes the graph balanced and strongly
connected.

3G

You now have a method to assemble a genome, since the String Reconstruction
Problem reduces to finding an Eulerian path in the de Bruijn graph generated from
reads.

3H

EXERCISE BREAK: Find an analogue of the nearly balanced condition that will
determine when an undirected graph has an Eulerian path.

The analogue of Euler’s theorem for undirected graphs immediately implies that there
is no Eulerian path in 18th Century Königsberg, but the story is different in modern-day
Kaliningrad (see DETOUR: The Seven Bridges of Kaliningrad). PAGE 178

Constructing universal strings

Now that you know how to use the de Bruijn graph to solve the String Reconstruction
Problem, you can also construct a k-universal string for any value of k. We should note
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that de Bruijn was interested in constructing k-universal circular strings. For example,
00011101 is a 3-universal circular string, as it contains each of the eight binary 3-mers
exactly once (Figure 3.26).

1 
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0 

1 

1 1 

0 

FIGURE 3.26 The circular 3-universal string 00011101 contains each of the binary
3-mers (000, 001, 011, 111, 110, 101, 010, and 100) exactly once.

k-Universal Circular String Problem:
Find a k-universal circular string.

Input: An integer k.
Output: A k-universal circular string.

Like its analogue for linear strings, the k-Universal Circular String Problem is just a
specific case of a more general problem, which requires us to reconstruct a circular string
given its k-mer composition. This problem models the assembly of a circular genome
containing a single chromosome, like the genomes of most bacteria. We know that we
can reconstruct a circular string from its k-mer composition by finding an Eulerian cycle
in the de Bruijn graph constructed from these k-mers. Therefore, we can construct a
k-universal circular binary string by finding an Eulerian cycle in the de Bruijn graph
constructed from the collection of all binary k-mers (Figure 3.27).

EXERCISE BREAK: How many 3-universal circular strings are there?

3I

Even though finding a 20-universal circular string amounts to finding an Eulerian cycle
in a graph with over a million edges, we now have a fast algorithm for solving this
problem. Let BinaryStringsk be the set of all 2k binary k-mers. The only thing we need
to do is to solve the k-Universal Circular String Problem is to find an Eulerian cycle
in DEBRUIJN(BinaryStringsk). Note that the nodes of this graph represent all possible
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binary (k� 1)-mers. A directed edge connects (k� 1)-mer Pattern to (k� 1)-mer Pattern’
in this graph if there exists a k-mer whose prefix is Pattern and whose suffix is Pattern’.

00 01 

10 11 

00 00 00 01 01 10 01 11 10 00 10 01 11 10 11 11 
000 001 010 011 100 101 110 111 

000 001 

010 
011 100 

101 

110 111 

FIGURE 3.27 (Top) A graph consisting of eight isolated directed edges, one for each
binary 3-mer. The nodes of each edge correspond to the 3-mer’s prefix and suffix.
(Bottom) Gluing identically labeled nodes in the graph on top results in a de Bruijn
graph containing four nodes. An Eulerian cycle through the edges 000! 001! 011!
111! 110! 101! 010! 100! 000 yields the 3-universal circular string 00011101.

STOP and Think: Figure 3.28 illustrates that DEBRUIJN(BinaryStrings4) is bal-
anced and strongly connected and is thus Eulerian. Can you prove that for any k,
DEBRUIJN(BinaryStringsk) is Eulerian?
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FIGURE 3.28 An Eulerian cycle spelling the cyclic 4-universal string 0000110010111101
in DEBRUIJN(BinaryStrings4).
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Assembling Genomes from Read-Pairs

From reads to read-pairs

Previously, we described an idealized form of genome assembly in order to build up
your intuition about de Bruijn graphs. In the rest of the chapter, we will discuss a
number of practically motivated topics that will help you appreciate the advanced
methods used by modern assemblers.

We have already mentioned that assembling reads sampled from a randomly gener-
ated text is a trivial problem, since random strings are not expected to have long repeats.
Moreover, de Bruijn graphs become less and less tangled when read length increases
(Figure 3.29). As soon as read length exceeds the length of all repeats in a genome
(provided the reads have no errors), the de Bruijn graph turns into a path. However,
despite many attempts, biologists have not yet figured out how to generate long and
accurate reads. The most accurate sequencing technologies available today generate
reads that are only about 300 nucleotides long, which is too short to span most repeats,
even in short bacterial genomes.

AT

GA

TA

TGC

GCCCCA

CAT

ATG
TGG

GGGGGA

GAT

ATG

CA

AA

GG

TG GT TT

GC

CC

ATG
TAA TGT GTTAAT TAAT AATG

TGCC

GCCACCAT

CATG

TGGG

GGAT

GATG

TAA

CAT

AAT ATG

GGGGAT

TGC

GCC

CCA

ATGC

ATGT
TGTT

TGT GTT

TGGATGG

TAATG AATGC ATGCC TGCCA GCCAT CCATG CATGG ATGGG TGGGA GGGAT GGATG GATGT ATGTT
TAAT CATGAATG ATGC TGCC GCCA CCAT ATGG TGGG GGGA GGAT GATG ATGT TGTT

FIGURE 3.29 The graph DEBRUIJN4(TAATGCCATGGGATGTT) (top right) is less tan-
gled than the graph DEBRUIJN3(TAATGCCATGGGATGTT) (top left). The graph
DEBRUIJN5(TAATGCCATGGGATGTT) (bottom) is a path.

We saw earlier that the string TAATGCCATGGGATGTT cannot be uniquely recon-
structed from its 3-mer composition since another string (TAATGGGATGCCATGTT) has
the same 3-mer composition.
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STOP and Think: What additional experimental information would allow you
to uniquely reconstruct the string TAATGCCATGGGATGTT ?

Increasing read length would help identify the correct assembly, but since increasing
read length presents a difficult experimental problem, biologists have suggested an
indirect way of increasing read length by generating read-pairs, which are pairs of
reads separated by a fixed distance d in the genome (Figure 3.30). You can think about a
read-pair as a long “gapped” read of length k + d + k whose first and last k-mers are
known but whose middle segment of length d is unknown. Nevertheless, read-pairs
contain more information than k-mers alone, and so we should be able to use them to
improve our assemblies. If only you could infer the nucleotides in the middle segment
of a read-pair, you would immediately increase the read length from k to 2 · k + d.

TAA-GCC 
AAT-CCA 

ATG-CAT GCC
-TG

G CCA-GG
G 

TGC-ATG 
GGA-GTT 

CAT-GGA 

GGG-TGT ATG
-GA

T 

TGG-ATG 

FIGURE 3.30 Read-pairs sampled from TAATGCCATGGGATGTT and formed by reads
of length 3 separated by a gap of length 1. A simple but inefficient way to assemble
these read-pairs is to construct the de Bruijn graph of individual reads (3-mers) within
the read-pairs.

Transforming read-pairs into long virtual reads

Let Reads be the collection of all 2N k-mer reads taken from N read-pairs. Note that a
read-pair formed by k-mer reads Read1 and Read2 corresponds to two edges in the de
Bruijn graph DEBRUIJNk(Reads). Since these reads are separated by distance d in the
genome, there must be a path of length k + d + 1 in DEBRUIJNk(Reads) connecting the
node at the beginning of the edge corresponding to Read1 with the node at the end of
the edge corresponding to Read2, as shown in Figure 3.31. If there is only one path of
length k + d + 1 connecting these nodes, or if all such paths spell out the same string,
then we can transform a read-pair formed by reads Read1 and Read2 into a virtual read
of length 2 · k + d that starts as Read1, spells out this path, and ends with Read2.

151



C H A P T E R 3

For example, consider the de Bruijn graph in Figure 3.31, which is generated from
all reads present in the read-pairs in Figure 3.30. There is a unique string spelled by
paths of length k + d + 1 = 5 between edges labeled AAT and CCA within a read-pair
represented by the gapped read AAT-CCA. Thus, from two short reads of length k, we
have generated a long virtual read of length 2 · k + d, achieving computationally what
researchers still cannot achieve experimentally! After preprocessing the de Bruijn graph
to produce long virtual reads, we can simply construct the de Bruijn graph from these
long reads and use it for genome assembly.

AT

GA

TA

TGC

GCCCCA

CAT

ATG
TGG

GGGGGA

GAT

ATG

CA

AA

GG

TG GT TT

GC

CC

ATG
TAA TGT GTTAAT

FIGURE 3.31 The highlighted path of length k + d + 1 = 3 + 1 + 1 = 5 between
the edges labeled AAT and CCA spells out AATGCCA. (There are three such paths
because there are three possible choices of edges labeled ATG.) Thus, the gapped read
AAT-CCA can be transformed into a long virtual read AATGCCA.

Although the idea of transforming read-pairs into long virtual reads is used in many
assembly programs, we have made an optimistic assumption: “If there is only one path
of length k + d + 1 connecting these nodes, or if all such paths spell out the same string . . . ”.
In practice, this assumption limits the application of the long virtual read approach to
assembling read-pairs because highly repetitive genomic regions often contain multiple
paths of the same length between two edges, and these paths often spell different strings
(Figure 3.32). If this is the case, then we cannot reliably transform a read-pair into a
long read. Instead, we will describe an alternative approach to analyzing read-pairs.
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TCT

CA GA

AC

AAT

TGACAT
CTG

TAT

AA AT TG
TGG

GG

TC CT

TA AT

ATC

ATA ATG

GACACA

TAT

CA

AC

GA

AAT

TGACAT
CTG

AA AT TG
TGG

GG

TC CT

TA AT

ATC

ATA ATG

TCT

GACACA

FIGURE 3.32 (Left) The highlighted path in DEBRUIJN3(AATCTGACATATGG) spells out
the long virtual read AATCTGACA, which is a substring of AATCTGACATATGG. (Right)
The highlighted path in the same graph spells out the long virtual read AATATGACA,
which does not occur in AATCTGACATATGG.

From composition to paired composition

Given a string Text, a (k, d)-mer is a pair of k-mers in Text separated by distance d. We
use the notation (Pattern1 |Pattern2) to refer to a (k, d)-mer whose k-mers are Pattern1
and Pattern2. For example, (ATG|GGG) is a (3, 4)-mer in TAATGCCATGGGATGTT. The
(k, d)-mer composition of Text, denoted PAIREDCOMPOSITIONk, d(Text), is the collec-
tion of all (k, d)-mers in Text (including repeated (k, d)-mers). For example, here is
PAIREDCOMPOSITION3,1(TAATGCCATGGGATGTT):

TAA GCC
AAT CCA
ATG CAT
TGC ATG
GCC TGG
CCA GGG
CAT GGA
ATG GAT
TGG ATG
GGG TGT
GGA GTT

TAATGCCATGGGATGTT

EXERCISE BREAK: Generate the (3, 2)-mer composition of the string
TAATGCCATGGGATGTT.
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Since the order of (3, 1)-mers in PAIREDCOMPOSITION(TAATGCCATGGGATGTT) is un-
known, we list them according to the lexicographic order of the 6-mers formed by their
concatenated 3-mers:

(AAT |CCA) (ATG |CAT) (ATG |GAT) (CAT |GGA) (CCA |GGG) (GCC |TGG)
(GGA |GTT) (GGG |TGT) (TAA |GCC) (TGC |ATG) (TGG |ATG)

Note that whereas there are repeated 3-mers in the 3-mer composition of this string,
there are no repeated (3, 1)-mers in its paired composition. Furthermore, although
TAATGCCATGGGATGTT and TAAATGCCATGGGATGTT have the same 3-mer composi-
tion, they have different (3, 1)-mer compositions. Thus, if we can generate the (3, 1)-mer
composition of these strings, then we will be able to distinguish between them. But
how can we reconstruct a string from its (k, d)-mer composition? And can we adapt the
de Bruijn graph approach for this purpose?

String Reconstruction from Read-Pairs Problem:
Reconstruct a string from its paired composition.

Input: A collection of paired k-mers PairedReads and an integer d.
Output: A string Text with (k, d)-mer composition equal to PairedReads (if
such a string exists).

Paired de Bruijn graphs

Given a (k, d)-mer (a1 . . . ak | b1, . . . bk), we define its prefix and suffix as the following
(k� 1, d + 1)-mers:

PREFIX((a1 . . . ak | b1, . . . bk)) = (a1 . . . ak�1 | b1 . . . bk�1)

SUFFIX((a1 . . . ak | b1, . . . bk)) = (a2 . . . ak | b2 . . . bk)

For example, PREFIX((GAC |TCA)) = (GA |TC) and SUFFIX((GAC |TCA)) = (AC |CA).
Note that for consecutive (k, d)-mers appearing in Text, the suffix of the first (k, d)-

mer is equal to the prefix of the second (k, d)-mer. For example, for the consecutive
(k, d)-mers (TAA |GCC) and (AAT |CCA) in TAATGCCATGGGATGTT,

SUFFIX((TAA |GCC)) = PREFIX((AAT |CCA)) = (AA |CC) .
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Given a string Text, we construct a graph PATHGRAPHk, d(Text) that represents a
path formed by |Text|� (k + d + k) + 1 edges corresponding to all (k, d)-mers in Text.
We label edges in this path by (k, d)-mers and label the starting and ending nodes of an
edge by its prefix and suffix, respectively (Figure 3.33).

TAA
GCC

AAT
CCA

ATG
CAT

TGC
ATG

GCC
TGG

CCA
GGG

CAT
GGA

ATG
GAT

TGG
ATG

GGG
TGT

GGA
GTTTA GC AA CC 

AT CA TG AT 
GC TG CC GG CA GG AT GA 

TG AT GG TG GG GT GA TT 

FIGURE 3.33 PATHGRAPH3, 1(TAATGCCATGGGATGTT). Each (3, 1)-mer has been
displayed as a two-line expression to save space.

The paired de Bruijn graph, denoted DEBRUIJNk,d(Text), is formed by gluing iden-
tically labeled nodes in PATHGRAPHk, d(Text) (Figure 3.34). Note that the paired de
Bruijn graph is less tangled than the de Bruijn graph constructed from individual reads.

STOP and Think: It is easy to construct a paired de Bruijn graph from a string
Text. But how can we construct the paired de Bruijn graph from the (k, d)-mer
composition of Text?

We define COMPOSITIONGRAPHk, d(Text) as the graph consisting of |Text| � (k + d +

k) + 1 isolated edges that are labeled by the (k, d)-mers in Text, and whose nodes are
labeled by the prefixes and suffixes of these labels (see Figure 3.35). As you may have
guessed, gluing identically labeled nodes in PAIREDCOMPOSITIONGRAPHk, d(Text)
results in exactly the same de Bruijn graph as gluing identically labeled nodes in
PATHGRAPHk, d(Text). Of course, in practice, we will not know Text; however, we can
form COMPOSITIONGRAPHk, d(Text) directly from the (k, d)-mer composition of Text,
and the gluing step will result in the paired de Bruijn graph of this composition. The
genome can be reconstructed by following an Eulerian path in this de Bruijn graph.

A pitfall of paired de Bruijn graphs

We saw earlier that every solution of the String Reconstruction Problem corresponds to
an Eulerian path in the de Bruijn graph constructed from a k-mer composition. Likewise,
every solution of the String Reconstruction from Read-Pairs Problem corresponds to an
Eulerian path in the Paired de Bruijn graph constructed from a (k, d)-mer composition.
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TAA GCC AAT CCA ATG CAT TGC ATG GCC TGG CCA GGG CAT GGA ATG GAT TGG ATG GGG TGT GGA GTT 
TA GC AA CC AT CA 

TG AT GC TG CC GG CA GG 
AT GA 

TG AT GG TG GG GT GA TT 

TAA GCC AAT CCA ATG CAT TA GC AA CC AT CA TG AT 

TGC ATG 

GCC TGG CCA GGG CAT GGA 
CC GG CA GG AT GA 

GC TG 
ATG GAT 

TGG ATG GGG TGT GGA GTT 
TG AT GG TG GG GT GA TT 

TAA GCC AAT CCA ATG CAT TA GC AA CC 
AT CA TG AT TGG ATG GGG TGT GGA GTT 

GG TG 
GG GT GA TT 

ATG GAT 
TGC ATG 

GCC TGG CCA GGG CAT GGA 
CC GG CA GG AT GA 

GC TG 

FIGURE 3.34 (Top) PATHGRAPH3,1(TAATGCCATGGGATGTT) is formed by eleven
edges and twelve nodes. Only two of these nodes have the same label, (TG |AT).
(Middle) Bringing the two identically labeled nodes closer to each other in preparation
for gluing. (Bottom) The paired de Bruijn graph DEBRUIJN3,1(TAATGCCATGGGATGTT)
is obtained from PATHGRAPH3,1(TAATGCCATGGGATGTT) by gluing the nodes shar-
ing the label (TG |AT). This paired de Bruijn graph has a unique Eulerian path, which
spells out TAATGCCATGGGATGTT.

EXERCISE BREAK: In the paired de Bruijn graph shown in Figure 3.36, re-
construct the genome spelled by the following Eulerian path of (2, 1)-mers:
(AG |AG) ! (GC |GC) ! (CA |CT) ! (AG |TG) ! (GC |GC) ! (CT |CT) !
(TG |TG)! (GC |GC)! (CT |CA).

We also saw that every Eulerian path in the de Bruijn graph constructed from a k-mer
composition spells out a solution of the String Reconstruction Problem. But is this the
case for the paired de Bruijn graph?
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TA GC AA CC 

TAA GCC 

AA CC AT CA 

AAT CCA 

AT CA 
TG AT 

ATG CAT 

TG AT GC TG 

TGC ATG 

GC TG 
CC GG 

GCC TGG 

CC GG CA GG 

CCA GGG CA GG AT GA 

CAT GGA 
AT
 
GA
 

TG
 
AT
 AT

G 
GA
T 

TG AT GG TG 

TGG ATG 
GG TG 

GG GT 

GGG TGT 
GG GT GA TT 

GGA GTT 

FIGURE 3.35 The graph COMPOSITIONGRAPH3,1(TAATGCCATGGGATGTT) is a
collection of isolated edges. Each edge is labeled by a (3, 1)-mer in
TAATGCCATGGGATGTT; the starting node of an edge is labeled by the prefix of
the edge’s (3, 1)-mer, and the ending node of an edge is labeled by the suffix of this
(3, 1)-mer. Gluing identically labeled nodes yields the paired de Bruijn graph shown
in Figure 3.34 (bottom).

A A G G C C T A 

A T 
CA CT AG TG 

CT CT TG TG 
T T 

AG AG 
GC GC CT CA 

FIGURE 3.36 A paired de Bruijn graph constructed from a collection of nine (2, 1)-mers.

STOP and Think: The graph shown in Figure 3.36 has another Eulerian path:
(AG |AG) ! (GC |GC) ! (CT |CT) ! (TG |TG) ! (GC |GC) ! (CA |CT) !
(AG |TG) ! (GC |GC) ! (CT |CA). Can you reconstruct a genome spelled by
this path?

If you attempted the preceding question, then you know that not every Eulerian path
in the paired de Bruijn graph constructed from a (k, d)-mer composition spells out a
solution of the String Reconstruction from Read-Pairs Problem. You are now ready to
solve this problem and become a genome assembly expert.

3J
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CHARGING STATION (Generating All Eulerian Cycles): You know how
to construct a single Eulerian cycle in a graph, but it remains unclear how to
find all possible Eulerian cycles, which will be helpful when solving the String
Reconstruction from Read-Pairs Problem. Check out this Charging Station to see
how to generate all Eulerian cycles in a graph.

PAGE
165

CHARGING STATION (Reconstructing a String Spelled by a Path in the
Paired de Bruijn Graph): To solve the String Reconstruction from Read-Pairs
Problem, you will need to reconstruct a string from its path in the paired de Bruijn
graph. Check out this Charging Station to see an example of how this can be
done.

PAGE
166

Epilogue: Genome Assembly Faces Real Sequencing Data

Our discussion of genome assembly has thus far relied upon various assumptions.
Accordingly, applying de Bruijn graphs to real sequencing data is not a straightforward
procedure. Below, we describe practical challenges introduced by quirks in modern
sequencing technologies and some computational techniques that have been devised
to address these challenges. In this discussion, we will first assume that reads are
generated as k-mers instead of read-pairs for the sake of simplicity.

Breaking reads into k-mers

Given a k-mer substring of a genome, we define its coverage as the number of reads
to which this k-mer belongs. We have taken for granted that a sequencing machine
can generate all k-mers present in the genome, but this assumption of “perfect k-mer
coverage” does not hold in practice. For example, the popular Illumina sequencing
technology generates reads that are approximately 300 nucleotides long, but this tech-
nology still misses many 300-mers present in the genome (even if the average coverage
is very high), and nearly all the reads that it does generate have sequencing errors.

STOP and Think: Given a set of reads having imperfect k-mer coverage, can
you find a parameter l < k so that the same reads have perfect l-mer coverage?
What is the maximum value of this parameter?

Figure 3.37 (left) shows four 10-mer reads that capture some but not all of the 10-mers
in an example genome. However, if we take the counterintuitive step of breaking these
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reads into shorter 5-mers (Figure 3.37, right), then these 5-mers exhibit perfect coverage.
This read breaking approach, in which we break reads into shorter k-mers, is used by
many modern assemblers.

ATGCCGTATGGACAACGACT ATGCCGTATGGACAACGACT
ATGCCGTATG ATGCC

GCCGTATGGA TGCCG
GTATGGACAA GCCGT

GACAACGACT CCGTA
CGTAT
GTATG
TATGG
ATGGA
TGGAC
GGACA
GACAA
ACAAC
CAACG
AACGA
ACGAC
CGACT

FIGURE 3.37 Breaking 10-mer reads (left) into 5-mers results in perfect coverage of a
genome by 5-mers (right).

Read breaking must deal with a practical trade-off. On the one hand, the smaller the
value of k, the larger the chance that the k-mer coverage is perfect. On the other hand,
smaller values of k result in a more tangled de Bruijn graph, making it difficult to infer
the genome from this graph.

Splitting the genome into contigs

Even after read breaking, most assemblies still have gaps in k-mer coverage, causing the
de Bruijn graph to have missing edges, and so the search for an Eulerian path fails. In
this case, biologists often settle on assembling contigs (long, contiguous segments of the
genome) rather than entire chromosomes. For example, a typical bacterial sequencing
project may result in about a hundred contigs, ranging in length from a few thousand
to a few hundred thousand nucleotides. For most genomes, the order of these contigs
along the genome remains unknown. Needless to say, biologists would prefer to have
the entire genomic sequence, but the cost of ordering the contigs into a final assembly
and closing the gaps using more expensive experimental methods is often prohibitive.

Fortunately, we can derive contigs from the de Bruijn graph. A path in a graph is
called non-branching if IN(v) = OUT(v) = 1 for each intermediate node v of this path,
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i.e., for each node except possibly the starting and ending node of a path. A maximal
non-branching path is a non-branching path that cannot be extended into a longer
non-branching path. We are interested in these paths because the strings of nucleotides
that they spell out must be present in any assembly with a given k-mer composition.
For this reason, contigs correspond to strings spelled by maximal non-branching paths
in the de Bruijn graph. For example, the de Bruijn graph in Figure 3.38, constructed
for the 3-mer composition of TAATGCCATGGGATGTT, has nine maximal non-branching
paths that spell out the contigs TAAT, TGTT, TGCCAT, ATG, ATG, ATG, TGG, GGG, and
GGAT. In practice, biologists have no choice but to break genomes into contigs, even in
the case of perfect coverage (like in Figure 3.38), since repeats prevent them from being
able to infer a unique Eulerian path.

AT

GA

TA

TGC

GCCCCA

CAT

ATG
TGG

GGGGGA

GAT

ATG

CA

AA

GG

TG GT TT

GC

CC

ATG
TAA TGT GTTAAT

AT
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TA

TGC

GCCCCA

CAT

ATG

TGG

GGA

GAT

ATG

CA

AA

GG

TG GT TT

GC

CC

ATG

TAA TGT GTTAAT

GG

AT

GG

TG

TGAT

TGAT

TGAT

AT TG

GGG

FIGURE 3.38 Breaking the graph DEBRUIJN3(TAATGCCATGGGATGTT) into nine max-
imal non-branching paths representing contigs TAAT, TGTT, TGCCAT, ATG, ATG,
ATG, TGG, GGG, and GGAT.

Contig Generation Problem:
Generate the contigs from a collection of reads (with imperfect coverage).

Input: A collection of k-mers Patterns.
Output: All contigs in DEBRUIJN(Patterns).

3K
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CHARGING STATION (Maximal Non-Branching Paths in a Graph): If you
have difficulties finding maximal non-branching paths in a graph, check out this
Charging Station. PAGE

169

Assembling error-prone reads

Error-prone reads represent yet another barrier to real sequencing projects. Adding the
single erroneous read CGTACGGACA (with a single error that misreads T as C) to the set
of reads in Figure 3.37 results in erroneous 5-mers CGTAC, GTACG, TACGG, ACGGA, and
CGGAC after read breaking. These 5-mers result in an erroneous path from node CGTA
to node GGAC in the de Bruijn graph (Figure 3.39 (top)), meaning that if the correct read
CGTATGGACA is generated as well, then we will have two paths connecting CGTA to
GGAC in the de Bruijn graph. This structure is called a bubble, which we define as two
short disjoint paths (e.g., shorter than some threshold length) connecting the same pair
of nodes in the de Bruijn graph.

TACG ACGG CGGA GTAC 

CGTAC 

GTACG TACGG ACGGA 

CGGAC 

CGTA GTAT TATG ATGG TGGA GGAC GACA CCGT 
CCGTA CGTAT GTATG TATGG ATGGA TGGAC GGACA 

FIGURE 3.39 (Top) A correct path CGTA ! GTAT ! TATG ! ATGG ! TGGA !
GGAC along with an incorrect path CGTA ! GTAC ! TACG ! ACGG ! CGGA !
GGAC form a bubble in a de Bruijn graph, making it difficult to identify which path
is correct. (Bottom) An illustration of a de Bruijn graph with many bubbles. Bubble
removal should leave only the colored paths remaining.

161



C H A P T E R 3

STOP and Think: Design an algorithm for detecting bubbles in de Bruijn graphs.
After a bubble is detected, you must decide which of two paths in the bubble to
remove. How should you make this decision?

Existing assemblers remove bubbles from de Bruijn graphs. The practical challenge
is that, since nearly all reads have errors, de Bruijn graphs have millions of bubbles
(Figure 3.39 (bottom)). Bubble removal occasionally removes the correct path, thus
introducing errors rather than fixing them. To make matters worse, in a genome having
inexact repeats, where the repeated regions differ by a single nucleotide or some other
small variation, reads from the two repeat copies will also generate bubbles in the de
Bruijn graph because one of the copies may appear to be an erroneous version of the
other. Applying bubble removal to these regions introduces assembly errors by making
repeats appear more similar than they are. Thus, modern genome assemblers attempt
to distinguish bubbles caused by sequencing errors (which should be removed) from
bubbles caused by variations (which should be retained).

Inferring multiplicities of edges in de Bruijn graphs

Although the de Bruijn graph framework requires that we know the multiplicity of
each k-mer in the genome (i.e., the number of times the k-mer appears), this information
is not readily available from reads. However, the multiplicity of a k-mer in a genome can
often be estimated using its coverage. Indeed, k-mers that appear t times in a genome
are expected to have approximately t times higher coverage than k-mers that appear
just once. Needless to say, coverage varies across the genome, and this condition is often
violated. As a result, existing assemblers often assemble repetitive regions in genomes
without knowing the exact number of times each k-mer from this region occurs in the
genome.

You should now have a handle on the practical considerations involved in genome
sequencing, but we will give you a challenge problem that does not encounter these
issues. Why? Developing assembly algorithms for large genomes is a formidable
challenge because even the seemingly simple problem of constructing the de Bruijn
graph from a collection of all k-mers present in millions of reads is nontrivial. To make
your life easier, we will give you a small bacterial genome for your first assembly dataset.
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CHALLENGE PROBLEM: Carsonella ruddii is a bacterium that lives symbioti-
cally inside some insects. Its sheltered life has allowed it to reduce its genome
to only about 160,000 base pairs. With only about 200 genes, it lacks some genes
necessary for survival, but these genes are supplied by its insect host. In fact,
Carsonella has such a small genome that biologists have conjectured that it is
losing its “bacterial” identity and turning into an organelle, which is part of the
host’s genome. This transition from bacterium to organelle has happened many
times during evolutionary history; in fact, the mitochondrion responsible for
energy production in human cells was once a free-roaming bacterium that we
assimilated in the distant past.

Given a collection of simulated error-free read-pairs, use the paired de Bruijn
graph to reconstruct the Carsonella ruddii genome. Compare this assembly to the
assembly obtained from the classic de Bruijn graph (i.e., when all we know is the
reads themselves and do not know the distance between paired reads) in order
to better appreciate the benefits of read-pairs. For each k, what is the minimum
value of d needed to enable reconstruction of the entire Carsonella ruddii genome
from its (k, d)-mer composition?

EXERCISE BREAK: By the way, one more thing . . . what was the headline of
the June 27, 2000 edition of the New York Times?
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Charging Stations

The effect of gluing on the adjacency matrix

Figure 3.40 uses Text = TAATGCCATGGGATGTT to illustrate how gluing converts the
adjacency matrix of PATHGRAPH3(Text) into the adjacency matrix of DEBRUIJN3(Text).

TA AA AT1 TG1 GC CC CA AT2 TG2 GG1 GG2 GA AT3 TG3 GT TT
TA 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AA 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
AT1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
TG1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
GC 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
CC 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
CA 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
AT2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
TG2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
GG1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
GG2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
GA 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
AT3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
TG3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
GT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
TT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TA AA AT TG GC CC CA GG GA GT TT
TA 0 1 0 0 0 0 0 0 0 0 0
AA 0 0 1 0 0 0 0 0 0 0 0
AT 0 0 0 3 0 0 0 0 0 0 0
TG 0 0 0 0 1 0 0 1 0 1 0
GC 0 0 0 0 0 1 0 0 0 0 0
CC 0 0 0 0 0 0 1 0 0 0 0
CA 0 0 1 0 0 0 0 0 0 0 0
GG 0 0 0 0 0 0 0 1 1 0 0
GA 0 0 1 0 0 0 0 0 0 0 0
GT 0 0 0 0 0 0 0 0 0 0 1
TT 0 0 0 0 0 0 0 0 0 0 0

FIGURE 3.40 Adjacency matrices. (Top) The 16 ⇥ 16 adjacency matrix of
PATHGRAPH3(TAATGCCATGGGATGTT). Note that we have used indexing to differenti-
ate multiple occurrences ofAT, TG, andGG in PATHGRAPH3(TAATGCCATGGGATGTT).
(Bottom) The 11 ⇥ 11 adjacency matrix of DEBRUIJN3(TAATGCCATGGGATGTT), pro-
duced after gluing nodes labeled by identical 2-mers. Note that if there are m edges
connecting nodes i and j, the (i, j)-th element of the adjacency matrix is m.
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Generating all Eulerian cycles

The inherent difficulty in generating all Eulerian cycles in a graph is keeping track of
potentially many different alternatives at any given node. On the opposite end of the
spectrum, a simple directed graph, a connected graph in which each node has indegree
and outdegree equal to 1, offers a trivial case, since there is only one Eulerian cycle.

Our idea, then, is to transform a single labeled directed graph Graph containing
n � 1 Eulerian cycles to n different simple directed graphs, each containing a single
Eulerian cycle. This transformation has the property that it is easily invertible, i.e., that
given the unique Eulerian cycle in one of the simple directed graphs, we can easily
reconstruct the original Eulerian cycle in Graph.

Given a node v in Graph (of indegree greater than 1) with incoming edge (u, v) and
outgoing edge (v, w), we will construct a “simpler” (u, v, w)-bypass graph in which we
remove the edges (u, v) and (v, w) from Graph, and add a new node x along with the
edges (u, x) and (v, x) (Figure 3.41 (top)). The new edges (u, x) and (v, x) in the bypass
graph inherit the labels of the removed edges (u, v) and (v, w), respectively. The critical
property of this graph is revealed by the following exercise.
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FIGURE 3.41 (Top) An Eulerian graph Graph (left) along with its (u, v,w)-bypass graph
(right) constructed for the blue and red edges. (Bottom) The other bypass graph con-
structed for the blue and green edges.
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EXERCISE BREAK: Show that any Eulerian cycle in Graph passing through
(u, v) and then (v, w) corresponds to an Eulerian cycle (with the same edge labels)
in the (u, v, w)-bypass graph passing through (u, x) and then (x, w).

In general, given an incoming edge (u, v) into v along with k outgoing edges (v, w1),
. . . , (v, wk) from v, we can construct k different bypass graphs (Figure 3.41 (bottom)).
Note that no two bypass graphs have the same Eulerian cycle.

Our idea, roughly stated, is to iteratively construct every possible bypass graph for
Graph until we obtain a large family of simple directed graphs; each one of these graphs
will correspond to a distinct Eulerian cycle in Graph. This idea is implemented by the
pseudocode below.

ALLEULERIANCYCLES(Graph)
AllGraphs the set consisting of a single graph Graph
while there is a non-simple graph G in AllGraphs

v a node with indegree larger than 1 in G
for each incoming edge (u, v) into v

for each outgoing edge (v,w) from v
NewGraph (u, v,w)-bypass graph of G
if NewGraph is connected

add NewGraph to AllGraphs

remove G from AllGraphs

for each graph G in AllGraphs
output the (single) Eulerian cycle in G

There exists a more elegant approach to constructing all Eulerian cycles in an Eulerian
graph that is based on a theorem that de Bruijn had a hand in proving. To learn about
this theorem, see DETOUR: The BEST Theorem.PAGE 179

Reconstructing a string spelled by a path in the paired de Bruijn graph

Consider the following Eulerian path formed by nine edges in the paired de Bruijn
graph from Figure 3.36.

AG-AG! GC-GC! CA-CT! AG-TG!
GC-GC! CT-CT! TG-TG! GC-GC! CT-CA
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We can arrange the (2, 1)-mers in this path into the nine rows shown below, revealing
the string AGCAGCTGCTGCA spelled by this path:

AG-AG
GC-GC
CA-CT
AG-TG
GC-GC
CT-CT
TG-TG
GC-GC
CT-CA

AGCAGCTGCTGCA

Now, consider another Eulerian path in the paired de Bruijn graph from Figure 3.36:

AG-AG! GC-GC! CT-CT! TG-TG!
GC-GC! CA-CT! AG-TG! GC-GC! CT-CA

An attempt to assemble these (2, 1)-mers reveals that not every column has the same nu-
cleotide (see the two columns shown in red below). This example illustrates that not all
Eulerian paths in the paired de Bruijn graph spell solutions of the String Reconstruction
from Read-Pairs Problem.

AG-AG
GC-GC
CT-CT
TG-TG
GC-GC
CA-CT
AG-TG
GC-GC
CT-CA

AGC?GC?GCTGCA
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String Spelled by a Gapped Genome Path Problem:
Reconstruct a sequence of (k, d)-mers corresponding to a path in a paired de Bruijn graph.

Input: A sequence of (k, d)-mers (a1|b1), . . . , (an|bn) such that
SUFFIX((ai|bi)) = PREFIX((ai+1|bi+1)) for 1  i  n� 1.
Output: A string Text of length k + d + k + n� 1 such that the i-th (k, d)-mer
of Text is equal to (ai|bi) for 1  i  n (if such a string exists).

Our approach to solving this problem will split the given (k, d)-mers (a1|b1), . . . , (an|bn)

into their initial k-mers, FirstPatterns = (a1, . . . , an), and their terminal k-mers, Second-
Patterns = (b1, . . . , bn). Assuming that we have implemented an algorithm solving the
String Spelled by a Genome Path Problem (denoted STRINGSPELLEDBYPATTERNS),
we can assemble FirstPatterns and SecondPatterns into strings PrefixString and Suf-
fixString, respectively.

For the first example above, we have that PrefixString = AGCAGCTGCT and Suf-
fixString = AGCTGCTGCA. These strings perfectly overlap starting at the fourth nu-
cleotide of PrefixString:

PrefixString = AGCAGCTGCT
SuffixString = AGCTGCTGCA

Genome = AGCAGCTGCTGCA

However, for the second example above, there is no perfect overlap:

PrefixString = AGCTGCAGCT
SuffixString = AGCTGCTGCA

Genome = AGC?GC?GCTGCA

The following algorithm, STRINGSPELLEDBYGAPPEDPATTERNS, generalizes this
approach to an arbitrary sequence GappedPatterns of (k, d)-mers. It constructs strings
PrefixString and SuffixString as described above, and checks whether they have perfect
overlap (i.e., form the prefix and suffix of a reconstructed string). It also assumes that
the number of (k, d)-mers in GappedPatterns is at least d; otherwise, it is impossible to
reconstruct a contiguous string.
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STRINGSPELLEDBYGAPPEDPATTERNS(GappedPatterns, k, d)
FirstPatterns the sequence of initial k-mers from GappedPatterns
SecondPatterns the sequence of terminal k-mers from GappedPatterns
PrefixString STRINGSPELLEDBYPATTERNS(FirstPatterns, k)
SuffixString STRINGSPELLEDBYPATTERNS(SecondPatterns, k)
for i = k + d + 1 to |PrefixString|

if the i-th symbol in PrefixString 6= the (i� k� d)-th symbol in SuffixString
return “there is no string spelled by the gapped patterns”

return PrefixString concatenated with the last k + d symbols of SuffixString

3L

Maximal non-branching paths in a graph

A node v in a directed graph Graph is called a 1-in-1-out node if its indegree and
outdegree are both equal to 1. We can rephrase the definition of a “maximal non-
branching path” from the main text as a path whose internal nodes are 1-in-1-out nodes
and whose initial and final nodes are not 1-in-1-out nodes. Also, note that the definition
from the main text does not handle the case when Graph has a connected component
that is an isolated cycle, in which all nodes are 1-in-1-out nodes (recall Figure 3.38).

MAXIMALNONBRANCHINGPATHS, shown below, iterates through all nodes of the
graph that are not 1-in-1-out nodes and generates all non-branching paths starting at
each such node. In a final step, it finds all isolated cycles in the graph.

3M

MAXIMALNONBRANCHINGPATHS(Graph)
Paths empty list
for each node v in Graph

if v is not a 1-in-1-out node
if OUT(v) > 0

for each outgoing edge (v,w) from v
NonBranchingPath the path consisting of the single edge (v,w)

while w is a 1-in-1-out node
extend NonBranchingPath by the outgoing edge (w, u) from w
w u

add NonBranchingPath to the set Paths

for each isolated cycle Cycle in Graph
add Cycle to Paths

return Paths
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Detours

A short history of DNA sequencing technologies

In 1988, Radoje Drmanac, Andrey Mirzabekov, and Edwin Southern simultaneously
and independently proposed the futuristic and at the time completely implausible
method of DNA arrays for DNA sequencing. None of these three biologists knew of
the work of Euler, Hamilton, and de Bruijn; none could have possibly imagined that the
implications of his own experimental research would eventually bring him face-to-face
with these mathematical giants.

A decade earlier, Frederick Sanger had sequenced the tiny 5,386 nucleotide-long
genome of the fX174 virus. By the late 1980s, biologists were routinely sequencing
viruses containing hundreds of thousands of nucleotides, but the idea of sequencing
bacterial (let alone human) genomes remained preposterous, both experimentally and
computationally. Indeed, generating a single read in the late 1980s cost more than a
dollar, pricing mammalian genome sequences in the billions. DNA arrays were therefore
invented with the goal of cheaply generating a genome’s k-mer composition, albeit with
a smaller read length k than the original DNA sequencing technology. For example,
whereas Sanger’s expensive sequencing technique generated 500 nucleotide-long reads
in 1988, the DNA array inventors initially aimed at producing reads of length only 10.

DNA arrays work as follows. We first synthesize all 4k possible DNA k-mers and
attach them to a DNA array, which is a grid on which each k-mer is assigned a unique
location. Next, we fluorescently label a single-stranded DNA fragment (with unknown
sequence) and apply a solution containing this labeled DNA to the DNA array. The
k-mers in a DNA fragment will hybridize (bind) to their reverse complementary k-mers
on the array. All we need to do is use spectroscopy to analyze which sites on the array
emit the fluorescence; the reverse complements of k-mers corresponding to these sites
must therefore belong to the (unknown) DNA fragment. Thus, the set of fluorescent
k-mers on the array reveals the composition of a DNA fragment (Figure 3.42).

At first, few believed that DNA arrays would work, because both the biochemical
problem of synthesizing millions of short DNA fragments and the algorithmic problem
of sequence reconstruction appeared too complicated. In 1988, Science magazine wrote
that given the amount of work required to synthesize a DNA array, “using DNA arrays
for sequencing would simply be substituting one horrendous task for another”. It
turned out that Science was only half right. In the mid-1990s, a number of companies
perfected technologies for designing large DNA arrays, but DNA arrays ultimately
failed to realize the dream that motivated their inventors because the fidelity of DNA
hybridization with the array was too low and because the value of k was too small.
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AAA AGA CAA CGA GAA GGA TAA TGA

AAC AGC CAC CGC GAC GGC TAC TGC

AAG AGG CAG CGG GAG GGG TAG TGG

AAT AGT CAT CGT GAT GGT TAT TGT

ACA ATA CCA CTA GCA GTA TCA TTA

ACC ATC CCC CTC GCC GTC TCC TTC

ACG ATG CCG CTG GCG GTG TCG TTG

ACT ATT CCT CTT GCT GTT TCT TTT

FIGURE 3.42 A toy DNA array containing all possible 3-mers. Taking the reverse
complements of the fluorescently labeled 3-mers yields the collection {ACC, ACG,
CAC, CCG, CGC, CGT, GCA, GTT, TAC, TTA}, which is the 3-mer composition of the
twelve nucleotide-long string CGCACGTTACCG. Note that this DNA array provides no
information regarding 3-mer multiplicities.

Yet the failure of DNA arrays was a spectacular one; while the original goal (DNA
sequencing) dangled out of reach, two new unexpected applications of DNA arrays
emerged. Today, arrays are used to measure gene expression as well as to analyze
genetic variations. These unexpected applications transformed DNA arrays into a
multi-billion dollar industry that included Hyseq, founded by Radoje Drmanac, one of
the original inventors of DNA arrays.

After founding Hyseq, Drmanac did not abandon his dream of inventing an alter-
native DNA sequencing technology. In 2005, he founded Complete Genomics, one of
the first Next Generation Sequencing (NGS) companies. Complete Genomics, Illumina,
Life Technologies, and other NGS companies subsequently developed the technology
to cheaply generate almost all k-mers from a genome, thus at last enabling the method
of Eulerian assembly. While these technologies are quite different from the DNA array
technology proposed in 1988, one can still recognize the intellectual legacy of DNA
arrays in NGS approaches, a testament to the fact that good ideas never die, even if they
fail at first.

Similarly to DNA arrays, NGS technologies initially generated millions of rather
short error-prone reads (of length about 20 nucleotides) when the NGS revolution began
in 2005. However, within a span of just a few years, NGS companies were able to
increase read length and improve accuracy by an order of magnitude. Moreover, Pacific
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Biosciences and Oxford Nanopore Technologies already generate error-ridden reads
containing thousands of nucleotides. Perhaps your own start-up will find a way to
generate a single read spanning the entire genome, thus making this chapter a footnote
in the history of genome sequencing. Whatever the future brings, recent developments
in NGS have already revolutionized genomics, and biologists are preparing to assemble
the genomes of all mammalian species on Earth . . . all while relying on a simple idea
that Leonhard Euler conceived in 1735.

Repeats in the human genome

A transposon is a DNA fragment that can change its position within the genome, often
resulting in a duplication (repeat). A transposon that inserts itself into a gene will most
likely disable that gene. Diseases that are caused by transposons include hemophilia,
porphyria, Duchenne muscular dystrophy, and many others. Transposons make up
a large fraction of the human genome and are divided into two classes according to
their mechanism of transposition, which can be described as either retrotransposons or
DNA transposons.

Retrotransposons are copied in two stages: first they are transcribed from DNA
to RNA, and the RNA produced is then reverse transcribed to DNA by a reverse
transcriptase. This copied DNA fragment is then inserted at a new position into
the genome. DNA transposons do not involve an RNA intermediate but instead are
catalyzed by transposases. The transposase cuts out the DNA transposon, which is
then inserted into a new site in the genome, resulting in a repeat.

The first transposons were discovered in maize by Barbara McClintock, for which
she was awarded a Nobel Prize in 1983. About 85% of the maize genome and 50% of the
human genome consist of transposons. The most common transposon in humans is the
Alu sequence, which is approximately 300 bases long and accounts for approximately
a million repeats (with mutations) in the human genome. The Mariner sequence is
another transposon in the human genome that has about 14,000 repeats, making up
2.6 million base pairs. Mariner-like transposons exist in many species and can even be
transmitted from one species to another. The Mariner transposon was used to develop
the Sleeping Beauty transposon system, a synthetic DNA transposon constructed for
the purposes of introducing new traits in animals and for gene therapy.
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Graphs

The use of the word “graph” in this book is different from its use in high school
mathematics; we do not mean a chart of data. You can think of a graph as a diagram
showing cities connected by roads.

The first panel in Figure 3.43 shows a 4⇥ 4 chessboard with the four corner squares
removed. A knight can move two steps in any of four directions (left, right, up, and
down) followed by one step in a perpendicular direction. For example, a knight at
square 1 can move to square 7 (two down and one left), square 9 (two down and one
right), or square 6 (two right and one down).
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FIGURE 3.43 (Left) A hypothetical chessboard. (Middle) The Knight Graph represents
each square by a node and connects two nodes with an edge if a knight can travel
between the respective squares in a single move. (Right) An equivalent representation
of the Knight Graph.

STOP and Think: Can a knight travel around this board, pass through each
square exactly once, and return to the same square it started on?

The second panel in Figure 3.43 represents each of the chessboard’s twelve squares as
a node. Two nodes are connected by an edge if a knight can move between them in a
single step. For example, node 1 is connected to nodes 6, 7, and 9. Connecting nodes in
this manner produces a “Knight Graph” consisting of twelve nodes and sixteen edges.

We can describe a graph by its set of nodes and edges, where every edge is written
as the pair of nodes that it connects. The graph in the second panel of Figure 3.43 is
described by the node set

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 ,

and the following edge set:
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1 — 6 1 — 7 1 — 9 2 — 3 2 — 8 2 — 10 3 — 9 3 — 11
4 — 10 4 — 12 5 — 7 5 — 11 6 — 8 6 — 12 7 — 12 10 — 11

A path in a graph is a sequence of edges, where each successive edge begins at
the node where the previous edge ends. For example, the path 8 ! 6 ! 1 ! 9 in
Figure 3.43 starts at node 8, ends at node 9, and consists of 3 edges. Paths that start and
end at the same node are referred to as cycles. The cycle 3! 2! 10! 11! 3 starts
and ends at node 3 and consists of 4 edges.

The way a graph is drawn is irrelevant; two graphs with the same node and edge sets
are equivalent, even if the particular pictures that represent the graph are different. The
only thing that is important is which nodes are connected and which are not. Therefore,
the graph in the second panel of Figure 3.43 is identical to the graph in the third panel.
This graph reveals a cycle that visits every node in the Knight Graph once and describes
a sequence of knight moves that visit every square exactly once.

EXERCISE BREAK: How many knight’s tours exist for the chessboard in Fig-
ure 3.43?

The number of edges incident to a given node v is called the degree of v. For example,
node 1 in the Knight Graph has degree 3, while node 5 has degree 2. The sum of degrees
of all twelve nodes is, in this case, 32 (eight nodes have degree 3 and four nodes have
degree 2), which is twice the number of edges in the graph.

STOP and Think: Can you connect seven phones in such a way that each is
connected to exactly three others?

Many bioinformatics problems analyze directed graphs, in which every edge is directed
from one node to another, as shown by the arrows in Figure 3.44. You can think of a
directed graph as a diagram showing cities connected by one-way roads. Every node
in a directed graph is characterized by indegree (the number of incoming edges) and
outdegree (the number of outgoing edges).

STOP and Think: Prove that for every directed graph, the sum of indegrees of
all nodes is equal to the sum of outdegrees of all nodes.

An undirected graph is connected if every two nodes have a path connecting them.
Disconnected graphs can be partitioned into disjoint connected components.

174



H O W D O W E A S S E M B L E G E N O M E S ?

FIGURE 3.44 A directed graph.

The icosian game

We make an historical detour to Dublin, with the creation in 1857 of the icosian game
by the Irish mathematician William Hamilton. This “game”, which was a commercial
flop, consisted of a wooden board with twenty pegholes and some lines connecting the
holes, as well as twenty numbered pegs (Figure 3.45 (left)). The objective was to place
the numbered pegs in the holes in such a way that peg 1 would be connected by a line
on the board to peg 2, which would in turn be connected by a line to peg 3, and so on,
until finally peg 20 would be connected by a line back to peg 1. In other words, if we
follow the lines on the board from peg to peg in ascending order, we reach every peg
exactly once and then arrive back at our starting peg.

FIGURE 3.45 (Left) Hamilton’s icosian game, with a winning placement of the pegs
shown. (Right) The winning placement of the pegs can be represented as a Hamiltonian
cycle in a graph. Each node in this graph represents a peghole on the board, and an
edge connects two pegholes that are connected by a line segment on the board.
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We can model the icosian game using a graph if we represent each peghole by
a node and then transform lines that connect pegholes into edges that connect the
corresponding nodes. This graph does have a Hamiltonian cycle solving the icosian
game; one of them is shown in Figure 3.45 (right). Although a brute force approach
to the Hamiltonian Cycle Problem works for these small graphs, it quickly becomes
infeasible for large graphs.

Tractable and intractable problems

Inspired by Euler’s Theorem, you probably are wondering whether there exists such a
simple result leading to a fast algorithm for the Hamiltonian Cycle Problem. The key
challenge is that while we are guided by Euler’s Theorem in solving the Eulerian Cycle
Problem, an analogous simple condition for the Hamiltonian Cycle Problem remains
unknown. Of course, you could always explore all walks through the graph and report
back if you find a Hamiltonian cycle. The problem with this brute force method is that
for a graph on just a thousand nodes, there may be more walks through the graph than
there are atoms in the universe!

For years, the Hamiltonian Cycle Problem eluded all attempts to solve it by some of
the world’s most brilliant researchers. After years of fruitless effort, computer scientists
began to wonder whether this problem is intractable, i.e., that their failure to find a
polynomial-time algorithm was not attributable to a lack of insight, but rather because
such an algorithm for solving the Hamiltonian Cycle Problem simply does not exist. In
the 1970s, computer scientists discovered thousands more algorithmic problems with
the same fate as the Hamiltonian Cycle Problem. While these problems may appear to
be simple, no one has been able to find fast algorithms for solving them. A large subset
of these problems, including the Hamiltonian Cycle Problem, are now collectively
known as NP-complete. A formal definition of NP-completeness is beyond the scope
of this text.

All the NP-complete problems are equivalent to each other: an instance of any
NP-complete problem can be transformed into an instance of any other NP-complete
problem in polynomial time. Thus, if you find a fast algorithm for one NP-complete
problem, you will automatically be able to use this algorithm to design a fast algorithm
for any other NP-complete problem! The problem of efficiently solving NP-complete
problems, or finally proving that they are intractable, is so fundamental that it was
named one of seven “Millennium Problems” by the Clay Mathematics Institute in 2000.
Find an efficient algorithm for any NP-complete problem, or show that one of these
problems is intractable, and the Clay Institute will award you a prize of one million
dollars.
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Think twice before you embark on solving an NP-complete problem. So far, only one
of the seven Millennium Problems has been solved; in 2003, Grigori Perelman proved
the Poincaré Conjecture. A true mathematician, Perelman would later turn down the
million-dollar prize, believing that the purity and beauty of mathematics is above all
worldly compensation.

NP-complete problems fall within a larger class of difficult computational problems.
A problem A is NP-hard if there is some NP-complete problem that can be reduced to
A in polynomial time. Because NP-complete problems can be reduced to each other in
polynomial time, all NP-complete problems are NP-hard. However, not every NP-hard
problem is NP-complete (meaning that the former are “at least as difficult” to solve as
the latter). One example of an NP-hard problem that is not NP-complete is the Traveling
Salesman Problem, in which we are given a graph with weighted edges and we must
produce a Hamiltonian cycle of minimum total weight.

From Euler to Hamilton to de Bruijn

Euler’s presented his solution of the Bridges of Königsberg Problem to the Imperial
Russian Academy of Sciences in St. Petersburg in 1735. Figure 3.46 shows Euler’s
drawing of the Seven Bridges of Königsberg.

FIGURE 3.46 Euler’s illustration of Königsberg, showing each of the four parts of the
city labeled A, B, C, and D, along with the seven bridges crossing the different arms of
the Pregel river.

Euler was the most prolific mathematician of all time; besides graph theory, he first
introduced the notation f(x) to represent a function, i for the square root of -1, and p for
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the circular constant. Working very hard throughout his entire life, he became blind
in his right eye in 1735. He kept working. In 1766, he lost the use of his left eye and
commented: “Now I will have fewer distractions.” He kept working. Even after going
completely blind, he published hundreds of papers.

In this chapter, we have met three mathematicians of three different centuries, Euler,
Hamilton, and de Bruijn, spread out across Europe (Figure 3.47). We might be inclined
to feel a sense of adventure at their work and how it converged to this singular point
in modern biology. Yet the first biologists who worked on DNA sequencing had no
idea of how graph theory could be applied to this subject. What’s more, the first paper
applying the three mathematicians’ ideas to genome assembly was published lifetimes
after the deaths of Euler and Hamilton, when de Bruijn was in his seventies. So perhaps
we might think of these three men not as adventurers, but instead as lonely wanderers.
As is so often the mathematician’s curse, each of the three passionately pursued abstract
questions while having no idea where the answers might one day lead without him.

FIGURE 3.47 Leonhard Euler (left), William Hamilton (center), and Nicolaas de Bruijn
(right).

The seven bridges of Kaliningrad

Königsberg was largely destroyed during World War II; its ruins were captured by the
Soviet army. The city was renamed Kaliningrad in 1946 in honor of Soviet revolutionary
Mikhail Kalinin.

Since the 18th Century, much has changed in the layout of Königsberg, and it just so
happens that the bridge graph drawn today for the city of Kaliningrad still does not
contain an Eulerian cycle. However, this graph does contain an Eulerian path, which
means that Kaliningrad residents can walk crossing every bridge exactly once, but
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cannot do so and return to where they started. Thus, the citizens of Kaliningrad finally
achieved at least a small part of the goal set by the citizens of Königsberg (although
they have to take a taxi home). Yet strolling around Kaliningrad is not as pleasant as
it would have been in 1735, since the beautiful old Königsberg was ravaged by the
combination of Allied bombing in 1944 and dreadful Soviet architecture in the years
following World War II.

The BEST Theorem

Given an adjacency matrix A(G) of a directed Eulerian graph G, we define the matrix
A⇤(G) by replacing the i-th diagonal entry of �A(G) by INDEGREE(i) for each node i
in G (Figure 3.48).

a b c d a b c d

a b 

d c 

a 0 1 0 0 a 1 -1 0 0

b 0 0 1 1 b 0 2 -1 -1
A(G) A⇤(G)

c 1 1 0 0 c -1 -1 2 0

d 0 0 1 0 d 0 0 -1 1

FIGURE 3.48 (Left) A graph G with two Eulerian cycles. (Middle) The adjacency matrix
A(G) of G. (Right) The matrix A⇤(G). Each i-cofactor of A⇤ is equal to 2. Thus, the
BEST theorem computes the number of Eulerian cycles as 2 · 0! · 1! · 1! · 1! = 2.

The i-cofactor of a matrix M is the determinant of the matrix obtained from M by
deleting its i-th row and i-th column. It can be shown that for a given Eulerian graph G,
all i-cofactors of A⇤(G) have the same value, which we denote as c(G).

The following theorem provides a formula computing the number of Eulerian cycles
in a graph. Its name is an acronym of its discoverers: de Bruijn, van Aardenne-Ehrenfest,
Smith, and Tutte.

BEST Theorem: The number of Eulerian cycles in an Eulerian graph is equal to

c(G) · ’
all nodes v in graph G

(INDEGREE(v)� 1)!

The proof of the BEST Theorem, which is beyond the scope of this text, provides us
with an alternative way to construct all Eulerian cycles in an Eulerian directed graph.

179



C H A P T E R 3

Bibliography Notes

After Euler’s work on the Königsberg Bridge Problem (Euler, 1758), graph theory
was forgotten for over a hundred years but was revived in the second half of the 19th
Century. Graph theory flourished in the 20th Century, when it became an important area
of mathematics with many practical applications. The de Bruijn graph was introduced
independently by Nicolaas de Bruijn (de Bruijn, 1946) and I. J. Good (Good, 1946).

DNA sequencing methods were invented independently and simultaneously in 1977
by groups led by Frederick Sanger (Sanger, Nicklen, and Coulson, 1977) and Walter
Gilbert (Maxam and Gilbert, 1977). DNA arrays were proposed simultaneously and
independently in 1988 by Radoje Drmanac (Drmanac et al., 1989), Andrey Mirzabekov
(Lysov et al., 1988) and Edwin Southern (Southern, 1988). The Eulerian approach to
DNA arrays was described in 1989 (Pevzner, 1989).

The Eulerian approach to DNA sequencing was described by Idury and Waterman,
1995 and further developed by Pevzner, Tang, and Waterman, 2001. To address the
challenge of assembly from short reads produced by next generation sequencing tech-
nologies, a number of assembly tools that are based on de Bruijn graphs have been
developed (Zerbino and Birney, 2008, Butler et al., 2008). Paired de Bruijn graphs were
introduced by Medvedev et al., 2011.

The Sleeping Beauty transposon system was developed by Ivics et al., 1997.
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The Discovery of Antibiotics

In August 1928, before leaving for vacation, Scottish microbiologist Alexander Fleming
stacked his cultures of infection-causing Staphylococcus bacteria on a laboratory bench.
When he returned to work a few weeks later, Fleming noticed that one culture had been
contaminated with Penicillium fungus, and that the colony of Staphylococcus surrounding
it had been destroyed! Fleming named the bacteria-killing substance penicillin, and he
suggested that it could be used to treat bacterial infections in humans.

When Fleming published his discovery in 1929, his article had little immediate
impact. Subsequent experiments struggled to isolate the antibiotic agent (i.e., the
compound that actually killed bacteria) from the fungus. As a result, Fleming eventually
concluded that penicillin could not be practically applied to treat bacterial infections
and abandoned his antibiotics research.

Searching for new drugs to treat wounded soldiers, the American and British gov-
ernments intensified their search for antibiotics after the start of World War II; however,
the challenge of mass-producing antibiotics remained. In March 1942, half of the total
supply of penicillin owned by pharmaceutical giant Merck was used to treat a single
infected patient.

Also in 1942, Russian biologists Georgy Gause and Maria Brazhnikova noticed that
the Bacillus brevis bacterium killed the pathogenic bacterium Staphylococcus aureus. In
contrast to Fleming’s efforts with penicillin, they successfully isolated the antibiotic
compound from Bacillus brevis and named it Gramicidin Soviet. Within a year, this
antibiotic was distributed to Soviet military hospitals.

Meanwhile, American scientists were scouring various food markets for rotten
groceries and finally found a moldy cantaloupe in Illinois with a high concentration
of penicillin. This mundane discovery allowed the United States to produce 2 million
doses of penicillin in time for the Allied invasion of Normandy in 1944, thus saving
thousands of wounded soldiers’ lives.

Gause continued his research into Gramicidin Soviet after World War II but failed
to elucidate its chemical structure. Taking the torch from Gause, English biochemist
Richard Synge studied Gramicidin Soviet and a wide array of other antibiotics produced
by Bacillus brevis. A few years after World War II ended, he demonstrated that they
represent short amino acid sequences (i.e., mini-proteins) called peptides. Gause re-
ceived the Stalin Prize in 1946, and Synge won the Nobel Prize in 1952. The former
award proved more valuable as it protected Gause from execution during the period of
Lysenkoism, the Soviet campaign against “bourgeois” geneticists that intensified in the
postwar era. See DETOUR: Gause and Lysenkoism. PAGEPAGE 215215
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The mass-production of antibiotics initiated an arms race between pharmaceutical
companies and pathogenic bacteria. The former worked to develop new antibiotic drugs,
while the latter acquired resistance against these drugs. Although modern medicine
won every battle for six decades, the last ten years have witnessed an alarming rise in
antibiotic-resistant bacterial infections that cannot be treated even by the most powerful
antibiotics. In particular, the Staphylococcus aureus bacterium that Gause had studied
in 1942 mutated into a resistant strain known as Methicillin-resistant Staphylococcus

aureus (MRSA). MRSA is now the leading cause of death from infections in hospitals;
its death rate has even passed that of AIDS in the United States.

With the rise of MRSA at hand, developing new antibiotics represents a central
challenge to modern medicine. A difficult problem in antibiotics research is that of
sequencing newly discovered antibiotics, or determining the order of amino acids
making up the antibiotic peptide.

How Do Bacteria Make Antibiotics?

How peptides are encoded by the genome

Let’s begin by considering Tyrocidine B1, one of many antibiotics produced by Bacillus
brevis. Tyrocidine B1 is defined by the 10 amino acid-long sequence shown below (using
both the one-letter and three-letter notations for amino acids). Our goal in this section
is to figure out how Bacillus brevis could have made this antibiotic.

Three-letter notation Val-Lys-Leu-Phe-Pro-Trp-Phe-Asn-Gln-Tyr
One-letter notation V K L F P W F N Q Y

The Central Dogma of Molecular Biology states that “DNA makes RNA makes pro-
tein.” According to the Central Dogma, a gene from a genome is first transcribed
into a strand of RNA composed of four ribonucleotides: adenine, cytosine, guanine,
and uracil. A strand of RNA can be represented as an RNA string, formed over the
four-letter alphabet {A,C,G,U}. You can think of the genome as a large cookbook, in
which case the gene and its RNA transcript form a recipe in this cookbook. Then, the
RNA transcript is translated into an amino acid sequence of a protein.

Much like replication, the chemical machinery underlying transcription and transla-
tion is fascinating, but from a computational perspective, both processes are straightfor-
ward. Transcription simply transforms a DNA string into an RNA string by replacing
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all occurrences of T with U. The resulting strand of RNA is translated into an amino
acid sequence as follows. During translation, the RNA strand is partitioned into non-
overlapping 3-mers called codons. Then, each codon is converted into one of 20 amino
acids via the genetic code; the resulting sequence can be represented as an amino
acid string over a 20-letter alphabet. As illustrated in Figure 4.1, each of the 64 RNA
codons encodes its own amino acid (some codons encode the same amino acid), with
the exception of three stop codons that do not translate into amino acids and serve to
halt translation (see DETOUR: Discovery of Codons). For example, the DNA string PAGEPAGE 216216
TATACGAAA transcribes into the RNA string UAUACGAAA, which in turn translates into, which in turn translates into
the amino acid string YTK.

FIGURE 4.1 The genetic code describes the translation of an RNA 3-mer (codon) into
one of 20 amino acids. The first three circles, moving from the inside out, represent
the first, second, and third nucleotides of a codon. The fourth, fifth, and sixth circles
define the translated amino acid in three ways: the amino acid’s full name, its 3-letter
abbreviation, and its single-letter abbreviation. Three of the 64 total RNA codons are
stop codons, which halt translation.
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We will represent the genetic code as an array GENETICCODE containing 64 ele-
ments, as shown in Figure 4.2. The following problem asks you to find the translation
of an RNA string into an amino acid string.

Protein Translation Problem:
Translate an RNA string into an amino acid string.

Input: An RNA string Pattern and the array GENETICCODE.
Output: The translation of Pattern into an amino acid string Peptide.

4A

EXERCISE BREAK: How many DNA strings of length 30 transcribe and trans-
late into Tyrocidine B1?

0 AAA K 16 CAA Q 32 GAA E 48 UAA *
1 AAC N 17 CAC H 33 GAC D 49 UAC Y
2 AAG K 18 CAG Q 34 GAG E 50 UAG *
3 AAU N 19 CAU H 35 GAU D 51 UAU Y
4 ACA T 20 CCA P 36 GCA A 52 UCA S
5 ACC T 21 CCC P 37 GCC A 53 UCC S
6 ACG T 22 CCG P 38 GCG A 54 UCG S
7 ACU T 23 CCU P 39 GCU A 55 UCU S
8 AGA R 24 CGA R 40 GGA G 56 UGA *
9 AGC S 25 CGC R 41 GGC G 57 UGC C

10 AGG R 26 CGG R 42 GGG G 58 UGG W
11 AGU S 27 CGU R 43 GGU G 59 UGU C
12 AUA I 28 CUA L 44 GUA V 60 UUA L
13 AUC I 29 CUC L 45 GUC V 61 UUC F
14 AUG M 30 CUG L 46 GUG V 62 UUG L
15 AUU I 31 CUU L 47 GUU V 63 UUU F

FIGURE 4.2 The array GENETICCODE contains 64 elements, each of which is an amino
acid or a stop codon (represented by *).

Where is Tyrocidine encoded in the Bacillus brevis genome?

Thousands of different DNA 30-mers could code for Tyrocidine B1, and we would like
to know which one appears in the Bacillus brevis genome. There are three different ways
to divide a DNA string into codons for translation, one starting at each of the first three
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positions of the string. These different ways of dividing a DNA string into codons are
called reading frames. Since DNA is double-stranded, a genome has six reading frames
(three on each strand), as shown in Figure 4.3.

GTGAAACTTTTTCCTTGGTTTAATCAATAT
CACTTTGAAAAAGGAACCAAATTAGTTATADNA

Translated peptides

CACUUUGAAAAAGGAACCAAAUUAGUUAUA

GUGAAACUUUUUCCUUGGUUUAAUCAAUAU

HisPheLysLysArgProLysIleLeuIle
 SerValLysGluLysThrSTPAspIle
  PheSerLysGlyGlnAsnLeuSTPTyr

Transcribed RNA

  GluThrPheSerLeuValSTPSerIle
 STPAsnPhePheLeuGlyLeuIleAsn
ValLysLeuPheProTrpPheAsnGlnTyr

5'
5'3'
3'

Transcribed RNA

Translated peptides

FIGURE 4.3 Six different reading frames give six different ways for the same fragment
of DNA to be transcribed and translated (three from each strand). The top three amino
acid strings are read from left to right, whereas the bottom three strings are read from
right to left. The highlighted amino acid string spells out the sequence of Tyrocidine B1.
Stop codons are represented by STP.

We say that a DNA string Pattern encodes an amino acid string Peptide if the RNA
string transcribed from either Pattern or its reverse complement Pattern translates into
Peptide. For example, the DNA string GAAACT is transcribed into GAAACU and trans-
lated into ET. The reverse complement of this DNA string, AGTTTC, is transcribed into
AGUUUC and translated into SF. Thus, GAAACT encodes both ET and SF.

Peptide Encoding Problem:
Find substrings of a genome encoding a given amino acid sequence.

Input: A DNA string Text and an amino acid string Peptide.
Output: All substrings of Text encoding Peptide (if any such substrings exist).

4B
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STOP and Think: Solve the Peptide Encoding Problem for Bacillus brevis and
Tyrocidine B1. Which starting positions in Bacillus brevis encode this peptide?

By solving the Peptide Encoding Problem for Tyrocidine B1, we should find a 30-mer in
the Bacillus brevis genome encoding Tyrocidine B1, and yet no such 30-mer exists!

STOP and Think: How could a bacterium produce a peptide that is not encoded
by the bacterium’s genome?

From linear to cyclic peptides

Neither Gause nor Synge was aware of it, but tyrocidines and gramicidins are actually
cyclic peptides. The cyclic representation for Tyrocidine B1 is shown in Figure 4.4 (left).
Thus, Tyrocidine B1 has ten different linear representations, and we should run the
Peptide Encoding Problem on every one of these sequences to find potential 30-mers
coding for Tyrocidine B1. Yet when we solve the Peptide Encoding Problem for each
of the ten strings in Figure 4.4 (right), we find no 30-mer in the Bacillus brevis genome
encoding Tyrocidine B1!

Tyr

Lys
Leu

Phe

Pro

Trp
Phe

Asn

Gln

Val
1 Val-Lys-Leu-Phe-Pro-Trp-Phe-Asn-Gln-Tyr

2 Lys-Leu-Phe-Pro-Trp-Phe-Asn-Gln-Tyr-Val

3 Leu-Phe-Pro-Trp-Phe-Asn-Gln-Tyr-Val-Lys

4 Phe-Pro-Trp-Phe-Asn-Gln-Tyr-Val-Lys-Leu

5 Pro-Trp-Phe-Asn-Gln-Tyr-Val-Lys-Leu-Phe

6 Trp-Phe-Asn-Gln-Tyr-Val-Lys-Leu-Phe-Pro

7 Phe-Asn-Gln-Tyr-Val-Lys-Leu-Phe-Pro-Trp

8 Asn-Gln-Tyr-Val-Lys-Leu-Phe-Pro-Trp-Phe

9 Gln-Tyr-Val-Lys-Leu-Phe-Pro-Trp-Phe-Asn

10 Tyr-Val-Lys-Leu-Phe-Pro-Trp-Phe-Asn-Gln

FIGURE 4.4 Tyrocidine B1 is a cyclic peptide (left), and so it has ten different linear
representations (right).

Dodging the Central Dogma of Molecular Biology

Hopefully, you are perplexed, because the Central Dogma of Molecular Biology implies
that all peptides must be encoded by the genome. Nobel laureate Edward Tatum was
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just as confused, and in 1963, he devised an ingenious experiment. Protein translation
is carried out by a molecular machine called a ribosome, and so Tatum reasoned that
if he inhibited the ribosome, all protein production in Bacillus brevis should grind to a
halt. To his amazement, all proteins did indeed shut down — except for tyrocidines
and gramicidins! His experiment led Tatum to hypothesize that some yet unknown
non-ribosomal mechanism must assemble these peptides.

In 1969, Fritz Lipmann (another Nobel laureate) demonstrated that tyrocidines and
gramicidins are non-ribosomal peptides (NRPs), synthesized not by the ribosome,
but by a giant protein called NRP synthetase. This enzyme pieces together antibiotic
peptides without any reliance on RNA or the genetic code! We now know that every
NRP synthetase assembles peptides by growing them one amino acid at a time, as
shown in Figure 4.5.

The reason why many NRPs have pharmaceutical applications is that they have
been optimized by eons of evolution as “molecular bullets” that bacteria and fungi use
to kill their enemies. If these enemies happen to be pathogens, researchers are eager to
borrow these bullets as antibacterial drugs. However, NRPs are not limited to antibi-
otics: many of them represent anti-tumor agents and immunosuppressors, while others
are used by bacteria to communicate with other cells (see DETOUR: Quorum Sensing). PAGEPAGE 217217
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FIGURE 4.5 NRP synthetase is a giant multi-module protein that assembles a cyclic
peptide one amino acid at a time. Each of ten different modules (shown by different
colors) adds a single amino acid to the peptide, which in the figure is one of many
tyrocidines produced by Bacillus brevis. In a final step, the peptide is circularized.
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Sequencing Antibiotics by Shattering Them into Pieces

Introduction to mass spectrometry

Since NRPs do not adhere to the Central Dogma, we cannot infer them from the genome,
which brings us back to where we started. What makes sequencing these peptides even
more difficult is that many NRPs (including tyrocidines and gramicidins) are cyclic.
Thus, the standard tools for sequencing linear peptides, which we will describe later,
are not applicable to NRP analysis.

The workhorse of peptide sequencing is the mass spectrometer, an expensive molec-
ular scale that shatters molecules into pieces and then weighs the resulting fragments.
The mass spectrometer measures the mass of a molecule in daltons (Da); 1 Da is ap-
proximately equal to the mass of a single nuclear particle (i.e., a proton or neutron).

We will approximate the mass of a molecule by simply adding the number of
protons and neutrons found in the molecule’s constituent atoms, which yields the
molecule’s integer mass. For example, the amino acid glycine, which has chemical
formula C2H3ON, has an integer mass of 57, since 2 · 12 + 3 · 1 + 1 · 16 + 1 · 14 = 57. Yet
1 Da is not exactly equal to the mass of a proton/neutron, and we may need to account
for different naturally occurring isotopes of each atom when weighing a molecule (see
DETOUR: Molecular Mass). As a result, amino acids typically have non-integer massesPAGEPAGE 217217
(e.g., glycine has total integer mass equal to approximately 57.02 Da); for simplicity,
however, we will work with the integer mass table given in Figure 4.6. Tyrocidine B1,
which is represented by VKLFPWFNQY, has total mass 1322 Da (99 + 128 + 113 + 147 +
97 + 186 + 147 + 114 + 128 + 163 = 1322).

G A S P V T C I L N D K Q E M H F R Y W
57 71 87 97 99 101 103 113 113 114 115 128 128 129 131 137 147 156 163 186

FIGURE 4.6 Integer masses of amino acids. The integer mass of each amino acid is
computed by adding the number of protons and neutrons in the amino acid molecule.

The mass spectrometer can break each molecule of Tyrocidine B1 into two linear
fragments, and it analyzes samples that may contain billions of identical copies of the
peptide, with each copy breaking in its own way. One copy may break into LFP and
WFNQYVK (with respective masses 357 and 965), whereas another may break into PWFN
and QYVKLF. Our goal is to use the masses of these and other fragments to sequence the
peptide. The collection of all the fragment masses generated by the mass spectrometer
is called an experimental spectrum.
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STOP and Think: How can we use the experimental spectrum to sequence a
peptide?

The Cyclopeptide Sequencing Problem

For now, we will assume for simplicity that the mass spectrometer breaks the copies of a
cyclic peptide at every possible two bonds, so that the resulting experimental spectrum
contains the masses of all possible linear fragments of the peptide, which are called
subpeptides. For example, the cyclic peptide NQEL has 12 subpeptides: N, Q, E, L, NQ,
QE, EL, LN, NQE, QEL, ELN, and LNQ. We will also assume that subpeptides may occur
more than once if an amino acid occurs multiple times in the peptide; for example,
ELEL also has 12 subpeptides: E, L, E, L, EL, LE, EL, LE, ELE, LEL, ELE, and LEL.

EXERCISE BREAK: How many subpeptides does a cyclic peptide of length n
have?

The theoretical spectrum of a cyclic peptide Peptide is the collection of all of the masses
of its subpeptides, in addition to the mass 0 and the mass of the entire peptide, with
masses ordered from smallest to largest. We will denote the theoretical spectrum of
Peptide by CYCLOSPECTRUM(Peptide) and assume that this theoretical spectrum can
contain duplicate elements, as is the case for NQEL (shown below), where NQ and EL
have the same mass.

L N Q E LN NQ EL QE LNQ ELN QEL NQE NQEL
0 113 114 128 129 227 242 242 257 355 356 370 371 484

Generating Theoretical Spectrum Problem:
Generate the theoretical spectrum of a cyclic peptide.

Input: An amino acid string Peptide.
Output: CYCLOSPECTRUM(Peptide).

4C

CHARGING STATION (Generating the Theoretical Spectrum of a Peptide):
One way to solve the Generating Theoretical Spectrum Problem is to construct a
list containing all subpeptides of Peptide, then find the mass of each subpeptide
by adding the integer masses of its constituent amino acids. This approach will
work, but check out this Charging Station to see a more elegant algorithm.

PAGE
211
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Generating the theoretical spectrum of a known peptide is easy, but our aim is to solve
the reverse problem of reconstructing an unknown peptide from its experimental spec-
trum. We will start by assuming that a biologist is lucky enough to generate an ideal
spectrum, which is one coinciding with the peptide’s theoretical spectrum.

STOP and Think: Consider the theoretical spectrum for Tyrocidine B1 shown in
Figure 4.7. If an experiment produced this spectrum, how would you reconstruct
the amino acid sequence of Tyrocidine B1?

0 97 99 113 114 128 128 147 147 163 186 227
241 242 244 260 261 262 283 291 333 340 357 388
389 390 390 405 430 430 447 485 487 503 504 518
543 544 552 575 577 584 631 632 650 651 671 672
690 691 738 745 747 770 778 779 804 818 819 835
837 875 892 892 917 932 932 933 934 965 982 989

1031 1039 1060 1061 1062 1078 1080 1081 1095 1136 1159 1175
1175 1194 1194 1208 1209 1223 1225 1322

FIGURE 4.7 The theoretical spectrum for Tyrocidine B1 (VKLFPWFNQY), whose integer
representation is 99-128-113-147-97-186-147-114-128-163.

Cyclopeptide Sequencing Problem:
Given an ideal spectrum, find a cyclic peptide whose theoretical spectrum matches the
experimental spectrum.

Input: A collection of (possibly repeated) integers Spectrum corresponding
to an ideal spectrum.
Output: An amino acid string Peptide such that CYCLOSPECTRUM(Peptide) =
Spectrum (if such a string exists).

From now on, we will sometimes work directly with amino acid masses, taking the lib-
erty to represent a peptide by a sequence of integers denoting the peptide’s constituent
amino acid masses. For example, we represent NQEL as 114-128-129-113 and Tyroci-
dine B1 (VKLFPWFNQY) as 99-128-113-147-97-186-147-114-128-163. We have therefore
replaced an alphabet of 20 amino acids with an alphabet of only 18 integers because,
recalling Figure 4.6, two amino acid pairs (I/L and K/Q) have the same integer mass.

Note that in the general case that we are not restricted to the amino acid alphabet, the
Cyclopeptide Sequencing Problem could have multiple solutions. For example, “pep-
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tides” 1-1-3-3 and 1-2-1-4 have the same theoretical spectrum {1, 1, 2, 3, 3, 4, 4, 5, 5, 6, 7, 7}.

STOP and Think: Can you find two peptides (in the alphabet of 18 amino acid
masses) with identical theoretical spectra?

A Brute Force Algorithm for Cyclopeptide Sequencing

We first encountered brute force algorithms when looking for motifs in Chapter 2. In this
chapter, we will discuss how to speed up brute force algorithms for peptide sequencing
to make them practical.

Let’s design a straightforward brute force algorithm for the Cyclopeptide Sequenc-
ing Problem. We denote the total mass of an amino acid string Peptide as MASS(Peptide).
In mass spectrometry experiments, whereas the peptide that generated Spectrum is un-
known, the peptide’s mass is typically known and is denoted PARENTMASS(Spectrum).

For the sake of simplicity, we will also assume that for all experimental spectra,
PARENTMASS(Spectrum) is equal to the largest mass in Spectrum. The following brute
force cyclopeptide sequencing algorithm generates all possible peptides whose mass is
equal to PARENTMASS(Spectrum) and then checks which of these peptides has theoreti-
cal spectra matching Spectrum.

BFCYCLOPEPTIDESEQUENCING(Spectrum)
for every Peptide with MASS(Peptide) equal to PARENTMASS(Spectrum)

if Spectrum = CYCLOSPECTRUM(Peptide)
output Peptide

There should be no question that BFCYCLOPEPTIDESEQUENCING will solve the Cy-
clopeptide Sequencing Problem. However, we should be concerned about its running
time: how many peptides are there having mass equal to PARENTMASS(Spectrum)?

Counting Peptides with Given Mass Problem:
Compute the number of peptides of given mass.

Input: An integer m.
Output: The number of linear peptides having integer mass m.

4D
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If you have difficulty solving this problem or getting the runtime down, please return
to it after learning more about dynamic programming algorithms in Chapter 5. It turns
out that there are trillions of peptides having the same integer mass (1322) as Tyrocidine
B1 (Figure 4.8). Therefore, BFCYCLOPEPTIDESEQUENCING is completely impractical,
and we will not even bother asking you to implement it.
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FIGURE 4.8 The number of peptides with given integer mass grows exponentially.

STOP and Think: Figure 4.8 suggests that for large m, the number of peptides
with given integer mass m can be approximated as k · Cm, where k and C are
constants. Can you find these constants?

A Branch-and-Bound Algorithm for Cyclopeptide Sequencing

Just because the algorithm from the previous section failed miserably does not mean
that all brute force approaches are doomed. Can we design a faster brute force algorithm
based on a different idea?

Instead of checking all cyclic peptides with a given mass, our new approach to
solving the Cyclopeptide Sequencing Problem will “grow” candidate linear peptides
whose theoretical spectra are “consistent” with the experimental spectrum.

STOP and Think: What should it mean for a linear peptide to be consistent
with an experimental spectrum? Would you classify VKF as consistent with the
spectrum shown in Figure 4.7? What about VKY?
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Given an experimental spectrum Spectrum, we will form a collection Peptides of candi-
date linear peptides initially consisting of the empty peptide, which is just an empty
string (denoted "") having mass 0. At the next step, we will expand Peptides to contain
all linear peptides of length 1. We continue this process, creating 18 new peptides of
length k + 1 for each amino acid string Peptide of length k in Peptides by appending
every possible amino acid mass to the end of Peptide.

To prevent the number of candidate peptides from increasing exponentially, every
time we expand Peptides, we trim it by keeping only those linear peptides that remain
consistent with the experimental spectrum. We then check if any of these new linear
peptides has mass equal to MASS(Spectrum). If so, we circularize this peptide and check
whether it provides a solution to the Cyclopeptide Sequencing Problem.

More generally, brute force algorithms that enumerate all candidate solutions but
discard large subsets of hopeless candidates by using various consistency conditions are
known as branch-and-bound algorithms. Each such algorithm consists of a branching
step to increase the number of candidate solutions, followed by a bounding step to
remove hopeless candidates. In our branch-and-bound algorithm for the Cyclopeptide
Sequencing Problem, the branching step will extend each candidate peptide of length
k into 18 peptides of length k + 1, and the bounding step will remove inconsistent
peptides from consideration.

Note that the spectrum of a linear peptide does not contain as many masses as the
spectrum of a cyclic peptide with the same amino acid sequence. For instance, the theo-
retical spectrum of the cyclic peptide NQEL contains 14 masses (corresponding to "",
N, Q, E, L, LN, NQ, QW, EL, ELN, LNQ, NQE, QEL, and NQEL). However, the theoretical
spectrum of the linear peptide NQEL, shown in Figure 4.9, does not contain masses
corresponding to LN, LNQ, or ELN, since these subpeptides “wrap around” the end of
the linear peptide.

0 113 114 128 129 242 242 257 370 371 484
"" L N Q E NQ EL QE QEL NQE NQEL

FIGURE 4.9 The theoretical spectrum for the linear peptide NQEL.

EXERCISE BREAK: How many subpeptides does a linear peptide of length n
have?

Given an experimental spectrum Spectrum of a cyclic peptide, a linear peptide is consis-
tent with Spectrum if every mass in its theoretical spectrum is contained in Spectrum. If
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a mass appears more than once in the theoretical spectrum of the linear peptide, then
it must appear at least that many times in Spectrum in order for the linear peptide to
be consistent with Spectrum. For example, a linear peptide can still be consistent with
the theoretical spectrum of NQEL if the peptide’s spectrum contains 242 twice. But
a peptide cannot be consistent with the theoretical spectrum of NQEL if its spectrum
contains 113 twice.

The key to our new algorithm is that every linear subpeptide of a cyclic peptide
Peptide is consistent with CYCLOSPECTRUM(Peptide). Thus, to solve the Cyclopep-
tide Sequencing Problem for Spectrum, we can safely ban all peptides that are in-
consistent with Spectrum from the growing set Peptides, which powers the bounding
step that we described above. For example, the linear peptide VKF (with spectrum
{0, 99, 128, 147, 227, 275, 374}) will be banned because it is inconsistent with Tyrocidine
B1’s spectrum in Figure 4.7. But the linear peptide VKYwill not be banned because every
mass in its theoretical spectrum ({0, 99, 128, 163, 227, 291, 390}) is present in Figure 4.7.

What about the branching step? Given the current collection of linear peptides
Peptides, define EXPAND(Peptides) as a new collection containing all possible exten-
sions of peptides in Peptides by a single amino acid mass. We can now provide the
pseudocode for the branch-and-bound algorithm, called CYCLOPEPTIDESEQUENCING.

CYCLOPEPTIDESEQUENCING(Spectrum)
Peptides a set containing only the empty peptide
while Peptides is nonempty

Peptides EXPAND(Peptides)
for each peptide Peptide in Peptides

if MASS(Peptide) = PARENTMASS(Spectrum)

if CYCLOSPECTRUM(Peptide) = Spectrum
output Peptide

remove Peptide from Peptides
else if Peptide is not consistent with Spectrum

remove Peptide from Peptides

4E

CHARGING STATION (How Fast is CYCLOPEPTIDESEQUENCING?): After
the failure of BFCYCLOPEPTIDESEQUENCING, you may be hesitant to imple-
ment CYCLOPEPTIDESEQUENCING. The potential problem with this algorithm
is that it may generate incorrect k-mers at intermediate stages (i.e., k-mers that are
not subpeptides of a correct solution). In practice, however, this is not a concern.
Check out this Charging Station to see an example.

PAGE
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It is hard to imagine a worst-case scenario in which CYCLOPEPTIDESEQUENCING takes
a long time to run, but no one has been able to guarantee that this algorithm will not gen-
erate many incorrect k-mers at intermediate stages. BFCYCLOPEPTIDESEQUENCING

is exponential, and although in practice, CYCLOPEPTIDESEQUENCING is much faster,
this algorithm has not been proven to be polynomial. Thus, from the perspective of an
introductory algorithms course focusing on theoretical computer science, the practical
CYCLOPEPTIDESEQUENCING is just as inefficient as BFCYCLOPEPTIDESEQUENCING,
since neither algorithm’s running time can be bounded by a polynomial. See the Open
Problems section to learn more about the algorithmic challenges related to this problem.

Mass Spectrometry Meets Golf

From theoretical to real spectra

Although CYCLOPEPTIDESEQUENCING successfully reconstructed Tyrocidine B1, this
algorithm only works in the case of an ideal spectrum, i.e., when the experimental
spectrum of a peptide coincides exactly with its theoretical spectrum. This inflexibility
of CYCLOPEPTIDESEQUENCING presents a practical barrier, since mass spectrometers
generate “noisy” spectra that are far from ideal — they are characterized by having
both false masses and missing masses. A false mass is present in the experimental
spectrum but absent from the theoretical spectrum; a missing mass is present in the
theoretical spectrum but absent from the experimental spectrum (Figure 4.10).

Theoretical: 0 113 114 128 129 227 242 242 257 355 356 370 371 484

Experimental: 0 99 113 114 128 227 257 299 355 356 370 371 484

FIGURE 4.10 Theoretical and simulated experimental spectra for NQEL. Masses that
are missing from the experimental spectrum are shown in blue, and false masses in the
experimental spectrum are shown in green.

What is particularly worrisome about the example in Figure 4.10 is that the mass
of the amino acid E (129) is missing, and the mass of the amino acid V (99) is false;
as a result, the first step of CYCLOPEPTIDESEQUENCING would establish {V, L, N, Q}
as the amino acid composition of our candidate peptides, which is incorrect. In fact,
any false or missing mass will cause CYCLOPEPTIDESEQUENCING to throw out the
correct peptide, because its theoretical spectrum differs from the experimental spectrum.
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STOP and Think: How would you reformulate the Cyclopeptide Sequencing
Problem to handle experimental spectra with errors?

Adapting cyclopeptide sequencing for spectra with errors

To generalize the Cyclopeptide Sequencing Problem to handle noisy spectra, we need
to relax the requirement that a candidate peptide’s theoretical spectrum must match
the experimental spectrum exactly, and instead incorporate a scoring function that
will select the peptide whose theoretical spectrum matches the given experimen-
tal spectrum the most closely. Given a cyclic peptide Peptide and a spectrum Spec-
trum, we define SCORE(Peptide, Spectrum) as the number of masses shared between
CYCLOSPECTRUM(Peptide) and Spectrum. Recalling our example above, if

Spectrum = {0, 99, 113, 114, 128, 227, 257, 299, 355, 356, 370, 371, 484} ,

then SCORE(NQEL, Spectrum) = 11.
The scoring function should take into account the multiplicities of shared masses,

i.e., how many times they occur in each spectrum. For example, suppose that Spectrum is
the theoretical spectrum of NQEL (Figure 4.7); for this spectrum, mass 242 has multiplic-
ity 2. If 242 has multiplicity 1 in the theoretical spectrum of Peptide, then 242 contributes
1 to SCORE(Peptide, Spectrum). If 242 has larger multiplicity in the theoretical spectrum
of Peptide, then 242 contributes 2 to SCORE(Peptide, Spectrum).

Cyclopeptide Scoring Problem:
Compute the score of a cyclic peptide against a spectrum.

Input: An amino acid string Peptide and a collection of integers Spectrum.
Output: The score of Peptide against Spectrum, SCORE(Peptide, Spectrum).

4F

We now can redefine the Cyclopeptide Sequencing Problem for noisy spectra.

Cyclopeptide Sequencing Problem (for spectra with errors):
Find a cyclic peptide having maximum score against an experimental spectrum.

Input: A collection of integers Spectrum.
Output: A cyclic peptide Peptide maximizing SCORE(Peptide, Spectrum) over
all peptides Peptide with mass equal to PARENTMASS(Spectrum).
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Our goal is to adapt the CYCLOPEPTIDESEQUENCING algorithm to find a peptide with
maximum score. Remember that this algorithm had a stringent bounding step in which
all candidate linear peptides having inconsistent spectra were thrown out. For example,
we saw that the linear peptide VKF is inconsistent with the theoretical spectrum in
Figure 4.7. However, we perhaps should not ban VKF in the case of experimental
spectra, since they can have missing masses. Thus, we need to revise the bounding
step to include more candidate linear peptides, while still ensuring that the number of
peptides that we consider does not grow out of control.

STOP and Think: How can we limit the growth of the list of candidate linear
peptides in the case of experimental spectra?

To limit the number of candidate linear peptides under consideration, we will replace
the list Peptides with the list Leaderboard, which holds the N highest scoring candidate
peptides for further extension. At each step, we will expand all candidate peptides
found in Leaderboard, then eliminate those peptides whose newly calculated scores are
not high enough to keep them on the Leaderboard. This idea is similar to the notion of a
“cut” in a golf tournament; after the cut, only the top N golfers are allowed to play in the
next round, since they are the only players who have a reasonable chance of winning.

To be fair, a cut should include anyone who is tied with the Nth-place competitor.
Thus, Leaderboard should be trimmed down to the “N highest-scoring linear peptides
including ties”, which may include more than N peptides. Given a list of peptides Leader-
board, a spectrum Spectrum, and an integer N, define TRIM(Leaderboard, Spectrum, N) as
the collection of the top N highest-scoring linear peptides in Leaderboard (including ties)
with respect to Spectrum.

STOP and Think: Our peptide scoring function currently assumes that peptides
are circular, but peptides should technically be scored as linear peptides until the
final step. How would you score a linear peptide against a spectrum?

Note that SCORE(Peptide, Spectrum) currently only scores Peptide against Spectrum if
Peptide is cyclic. However, to generalize this scoring function when Peptide is lin-
ear, we simply exclude those subpeptides of Peptide that wrap around the end of
the string, resulting in a function LINEARSCORE(Peptide, Spectrum). For example, if
Spectrum is the experimental spectrum of NQEL from Figure 4.10, then you can ver-
ify that LINEARSCORE(NQEL, Spectrum) = 8. This brings us to the pseudocode for
LEADERBOARDCYCLOPEPTIDESEQUENCING.
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LEADERBOARDCYCLOPEPTIDESEQUENCING(Spectrum, N)
Leaderboard  set containing only the empty peptide
LeaderPeptide empty peptide
while Leaderboard is non-empty

Leaderboard  EXPAND(Leaderboard)
for each Peptide in Leaderboard

if MASS(Peptide) = PARENTMASS(Spectrum)

if SCORE(Peptide, Spectrum) > SCORE(LeaderPeptide, Spectrum)

LeaderPeptide Peptide
else if MASS(Peptide) > PARENTMASS(Spectrum)

remove Peptide from Leaderboard
Leaderboard TRIM(Leaderboard, Spectrum,N)

output LeaderPeptide

4G

CHARGING STATION (Trimming the Peptide Leaderboard): The tricky as-
pect of implementing LEADERBOARDCYCLOPEPTIDESEQUENCING is making
sure that the TRIM function is implemented correctly. Check out this Charging
Station for some help with trimming Leaderboard.

PAGE
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We point out that because a linear peptide giving rise to the highest-scoring cyclic
peptide may be trimmed early on, LEADERBOARDCYCLOPEPTIDESEQUENCING is a
heuristic, not guaranteed to correctly solve the Cyclopeptide Sequencing Problem.
When we develop a heuristic, we must ask: how accurate is it? Consider the simulated
spectrum Spectrum10 of Tyrocidine B1 shown in Figure 4.11 (top), with approximately
10% missing/false masses. Applying LEADERBOARDCYCLOPEPTIDESEQUENCING

to this spectrum (with N = 1000) results in the correct cyclic peptide VKLFPWFNQY,
which has a score of 86.

So far, LEADERBOARDCYCLOPEPTIDESEQUENCING has worked well, but as the
number of errors increases, so does the likelihood that this algorithm will return an
incorrect peptide. Let’s see how this algorithm performs on a noisier simulated spec-
trum; in Figure 4.11 (bottom), we show Spectrum25 for Tyrocidine B1, which has 25%
missing/false masses.

When run on Spectrum25, LEADERBOARDCYCLOPEPTIDESEQUENCING (with N =

1000) identifies VKLFPADFNQY (score: 83) as a highest-scoring cyclic peptide instead of
the correct peptide VKLFPWFNQY (score: 82). These two peptides are similar, owing to
the fact that the combined mass of A (71) and D (115) is equal to the mass of W (186).
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0 97 99 113 114 128 128 147 147 163 186 227
241 242 244 260 261 262 283 291 333 340 357 385
388 389 390 390 405 430 430 447 485 487 503 504
518 543 544 552 575 577 584 631 632 650 651 671
672 690 691 738 745 747 770 778 779 804 818 819
820 835 837 875 892 892 917 932 932 933 934 965
982 989 1030 1031 1039 1060 1061 1062 1078 1080 1081 1095

1136 1159 1175 1175 1194 1194 1208 1209 1223 1225 1322

0 97 99 113 114 115 128 128 147 147 163 186
227 241 242 244 244 256 260 261 262 283 291 309
330 333 340 347 357 385 388 389 390 390 405 430
430 435 447 485 487 503 504 518 543 544 552 575
577 584 599 608 631 632 650 651 653 671 672 690
691 717 738 745 747 770 778 779 804 818 819 827
835 837 875 892 892 917 932 932 933 934 965 982
989 1031 1039 1060 1061 1062 1078 1080 1081 1095 1136 1159

1175 1175 1194 1194 1208 1209 1223 1225 1322

FIGURE 4.11 (Top) A simulated experimental spectrum Spectrum10 of Tyrocidine B1.
This spectrum has approximately 10% missing (blue) and false (green) masses. Note that
the blue masses are not actually in the spectrum, but we show them so that it is clear
which masses are missing. (Bottom) A simulated experimental spectrum Spectrum25 of
Tyrocidine B1, with approximately 25% missing and false masses.

STOP and Think: How could we have eliminated the incorrect peptide
VKLFPADFNQY from consideration for Spectrum25?

Notice that although the correct and incorrect peptides are similar, their amino acid
compositions differ. If we could figure out the amino acid composition of Tyrocidine
B1 from its spectrum alone and run LEADERBOARDCYCLOPEPTIDESEQUENCING on
this smaller alphabet (rather than on the alphabet of all amino acids), then we could
eliminate the incorrect peptide VKLFPADFNQY from consideration.

From 20 to More than 100 Amino Acids

Until now, we have assumed that just 20 amino acids form the building blocks of
proteins; these building blocks are called proteinogenic amino acids. There are actu-
ally two additional proteinogenic amino acids, called selenocysteine and pyrrolysine,
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which are incorporated into proteins by special biosynthetic mechanisms (see DETOUR:PAGE 218
Selenocysteine and Pyrrolysine). Yet in addition to the 22 proteinogenic amino acids,
NRPs contain non-proteinogenic amino acids, which expand the number of possible
building blocks for antibiotic peptides from 20 to over 100.

Enlarging the amino acid alphabet spells trouble for our current approach to cy-
clopeptide sequencing. Indeed, the correct peptide now must “compete” with many
more incorrect ones for a place on the leaderboard, increasing the chance that the correct
peptide will be cut along the way.

For example, although Tyrocidine B1 contains only proteinogenic amino acids,
its close relative, Tyrocidine B (Val-Orn-Leu-Phe-Pro-Trp-Phe-Asn-Gln-Tyr), con-
tains a non-proteinogenic amino acid called ornithine (Orn). Because so many non-
proteinogenic amino acids exist, bioinformaticians often assume that any integer be-
tween 57 and 200 may represent the mass of an amino acid; the “lightest” amino acid,
Gly, has mass 57 Da, and most amino acids have masses smaller than 200 Da.

STOP and Think: Apply LEADERBOARDCYCLOPEPTIDESEQUENCING on the
extended amino acid alphabet (containing the 144 integers between 57 and 200)
to Spectrum10, and identify the highest-scoring peptides.

When we apply LEADERBOARDCYCLOPEPTIDESEQUENCING for the extended alpha-
bet to Spectrum10, one of the highest-scoring peptides is VKLFPWFNQXZ, where X has
mass 98 and Z has mass 65. Apparently, non-standard amino acids successfully com-
peted with standard amino acids for the limited number of positions on the leaderboard,
resulting in VKLFPWFNQXZ winning over the correct peptide VKLFPWFNQY. Since
LEADERBOARDCYCLOPEPTIDESEQUENCING fails to identify the correct peptide even
with only 10% false and missing masses, our stated aim from the previous section is
now even more important. We must determine the amino acid composition of a peptide
from its spectrum so that we may run LEADERBOARDCYCLOPEPTIDESEQUENCING

on this smaller alphabet of amino acids.

STOP and Think: How can we determine which amino acids are present in an
unknown peptide using only an experimental spectrum?
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The Spectral Convolution Saves the Day

One way to determine the amino acid composition of a peptide from its experimental
spectrum would be to take the smallest masses present in the spectrum (between 57 and
200 Da). However, even if only a single amino acid mass is missing, then this approach
will fail to reconstruct the peptide’s amino acid composition.

Let’s take a different approach. Say that our experimental spectrum contains the
masses of subpeptides NQE and NQ. If we subtract these two masses, then we will
obtain the mass E for free, even if it was not present in the experimental spectrum! If
the underlying peptide is NQEL, then we can also find the mass of E by subtracting the
masses of QE and Q or NQEL and LNQ.

Following this example, we define the convolution of a spectrum by taking all
positive differences of masses in the spectrum. Figure 4.12 shows the convolutions of
the theoretical (top) and simulated (bottom) spectra of NQEL from Figure 4.10.

As predicted, some of the values in Figure 4.12 appear more frequently than others.
For example, 113 (the mass of L) has multiplicity 8. Six of the eight occurrences of 113
correspond to subpeptide pairs differing in an L: L and ""; LN and N; EL and E; LNQ
and NQ; QEL and QE; NQEL and NQE. Interestingly, 129 (the mass of E) pops up three
times in the convolution of the simulated spectrum, even though 129 was missing from
the spectrum itself.

We now should feel confident about using the most frequently appearing integers
in the convolution as a guess for the amino acid composition of an unknown peptide.
In our simulated spectrum for NQEL, the most frequent elements of the convolution in
the range from 57 to 200 are (multiplicities in parentheses):

113 (4), 114 (4), 128 (4), 99 (3), 129 (3) .

Note that these most frequent elements capture all four amino acids in NQEL.

Spectral Convolution Problem:
Generate the convolution of a spectrum.

Input: A collection of integers Spectrum.
Output: The list of elements in the convolution of Spectrum in decreasing
order of their multiplicities.

4H
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"" L N Q E LN NQ EL QE LNQ ELN QEL NQE
0 113 114 128 129 227 242 242 257 355 356 370 371

0
113 113
114 114 1
128 128 15 14
129 129 16 15 1
227 227 114 113 99 98
242 242 129 128 114 113 15
242 242 129 128 114 113 15
257 257 144 143 129 128 30 15 15
355 355 242 241 227 226 128 113 113 98
356 356 243 242 228 227 129 114 114 99 1
370 370 257 256 242 241 143 128 128 113 15 14
371 371 258 257 243 242 144 129 129 114 16 15 1
484 484 371 370 356 355 257 242 242 227 129 128 114 113

"" false L N Q LN QE false LNQ ELN QEL NQE
0 99 113 114 128 227 257 299 355 356 370 371

0
99 99

113 113 14
114 114 15 1
128 128 29 15 14
227 227 128 114 113 99
257 257 158 144 143 129 30
299 299 200 186 185 171 72 42
355 355 256 242 241 227 128 98 56
356 356 257 243 242 228 129 99 57 1
370 370 271 257 256 242 143 113 71 15 14
371 371 272 258 257 243 144 114 72 16 15 1
484 484 385 371 370 356 257 227 185 129 128 114 113

FIGURE 4.12 (Top) Spectral convolution for the theoretical spectrum of NQEL. The
most frequent elements in the convolution between 57 and 200 are (multiplicities in
parentheses): 113 (8), 114 (8), 128 (8), 129 (8). (Bottom) Spectral convolution for the
simulated spectrum of NQEL. The most frequent elements in the convolution between
57 and 200 are (multiplicities in parentheses): 113 (4), 114 (4), 128 (4), 99 (3), 129
(3).
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Recall that LEADERBOARDCYCLOPEPTIDESEQUENCING failed to reconstruct Ty-
rocidine B1 from Spectrum10 when using the extended alphabet of amino acids. The
ten most frequent elements of its spectral convolution in the range from 57 to 200 are
(multiplicities in parentheses):

147 (35) 128 (31) 97 (28) 113 (28) 114 (26)
186 (23) 57 (21) 163 (21) 99 (18) 145 (18)

Every mass in this list except for 57 and 145 captures an amino acid in Tyrocidine B1!
We now have the outline for a new cyclopeptide sequencing algorithm. Given an

experimental spectrum, we first compute the convolution of an experimental spec-
trum. We then select the M most frequent elements between 57 and 200 in the con-
volution to form an extended alphabet of amino acid masses. In order to be fair, we
should include the top M elements of the convolution “with ties”. Finally, we run
LEADERBOARDCYCLOPEPTIDESEQUENCING, where amino acid masses are restricted
to this alphabet. We call this algorithm CONVOLUTIONCYCLOPEPTIDESEQUENCING.

4I

STOP and Think: Run CONVOLUTIONCYCLOPEPTIDESEQUENCING on the
simulated spectra Spectrum10 and Spectrum25 with N = 1000 and M = 20. Iden-
tify the highest scoring peptides.

CONVOLUTIONCYCLOPEPTIDESEQUENCING (with N = 1000 and M = 20) now cor-
rectly reconstructs Tyrocidine B1 from Spectrum10. The true test of this algorithm is
whether it will work on a noisier spectrum. Recall that our previous algorithm failed on
Spectrum25; in contrast, CONVOLUTIONCYCLOPEPTIDESEQUENCING (with N = 1000
and M = 20) now correctly identifies Tyrocidine B1 from this spectrum!

Epilogue: From Simulated to Real Spectra

In this chapter, we have sheltered you from the gruesome realities of mass spectrometry
by providing simulated spectra that are relatively easy to sequence (even those with
false and missing masses). We committed a sin of omission by loosely describing the
mass spectrometer as a “scale” and assuming that this complex machine simply weighs
tiny peptide fragments one at a time. In truth, the mass spectrometer first converts
subpeptides into ions (i.e., charged particles). Ionization of particles helps the mass
spectrometer sort the ions by using an electromagnetic field; ions are separated not
by their mass, but rather according to their mass/charge ratio. If fragment ion NQY
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(integer mass: 114 + 128 + 163 = 405) has charge +1, then it contains one additional
proton, resulting in a total integer mass of 406 and a mass/charge ratio of 406/1 =

406. To be more precise, the monoisotopic mass of NQY is approximately 114.043 +

128.058 + 163.063 = 405.164, and the mass of a proton is 1.007 Da, which makes the
mass charge/ratio more closely equal to (405.164 + 1.007)/1 = 406.171 (see DETOUR:PAGE 217
Molecular Mass).

The mass spectrometer outputs a collection of peaks, which are shown in Fig-
ure 4.13 for a real Tyrocidine B1 spectrum. Each peak’s x-coordinate represents an
ion’s mass/charge ratio, and its height represents the intensity (i.e., relative abundance)
of ions having that mass/charge ratio. For example, in the experimental spectrum
of Tyrocidine B1 shown in Figure 4.13, you will find a small (almost invisible) peak
with a mass/charge ratio of 406.30, which corresponds to the fragment ion NQY having
mass/charge ratio 406.171, with an error of approximately 0.13 Da.

As you can imagine, we must navigate a few practical barriers in order to analyze
real spectra. First, the charge of each peak is unknown, often forcing researchers to try
all possible charges from 1 to some parameter maxCharge, where the particular choice of
maxCharge depends on the fragmentation technology used. This procedure generates
maxCharge masses for each peak, so that the larger the value of maxCharge, the more
false masses in the spectrum.

300 400 500 600 700 800 900 1000 1100 1200 1300 1400 200 

FIGURE 4.13 A real spectrum for Tyrocidine B1. A peak’s x-coordinate represents its
mass/charge ratio, and its height represents the intensity of ions having that mass/charge
ratio.

Second, the spectrum in Figure 4.13 has nearly 1,000 peaks, most of which are false
peaks, meaning that their mass/charge ratio does not correspond to any subpeptide’s
mass/charge ratio (for any charge value). Fortunately, false peaks typically have low
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intensities, necessitating a pre-processing step that removes low-intensity peaks before
applying an algorithm. Figure 4.14 shows the list of the 95 mass/charge ratios for peaks
that survived this preprocessing step for the Tyrocidine B1 spectrum in Figure 4.13.
Their intensities may nevertheless vary by 2-3 orders of magnitude; for example, the
intensity of the peak having mass/charge ratio 372.2 is 300 times smaller than the
intensity of the peak with mass/charge ratio 1306.5.

372.2 397.2 402.0 406.3 415.1 431.2 448.3 449.3 452.2
471.3 486.3 488.2 500.5 505.3 516.1 536.1 544.2 545.3
562.5 571.3 599.2 614.4 615.4 616.4 618.2 632.0 655.5
656.3 672.5 673.3 677.3 691.4 692.4 712.1 722.3 746.5
760.4 761.6 762.5 771.6 788.4 802.3 803.3 818.5 819.4
831.4 836.3 853.3 875.5 876.5 901.5 915.9 916.5 917.8
918.4 933.4 934.7 935.5 949.4 966.2 995.4 1015.6 1027.5

1029.5 1031.5 1044.5 1046.5 1061.5 1063.4 1079.2 1083.7
1088.4 1093.5 1096.5 1098.4 1158.5 1159.5 1176.6 1177.7
1178.6 1192.7 1195.4 1207.5 1210.4 1224.6 1252.5 1270.5
1271.5 1278.6 1279.6 1295.6 1305.6 1306.5 1307.5 1309.6

FIGURE 4.14 The 95 mass/charge ratios having the highest intensity in Figure 4.13.
The values shown in bold correspond to masses of subpeptides of Tyrocidine B1, if we
allow a mass discrepancy of up to 0.3 Da (see Figure 4.15).

Mass Subpeptide Mass Subpeptide Mass Subpeptide
406.2 NQY 431.2 FPW 448.2 WFN
486.2 KLFP 488.2 VKLF 505.2 NQYV
544.2 LFPW 545.2 PWFN 632.3 QYVKL
672.3 KLFPW 673.3 PWFNQ 691.3 LFPWF
692.3 FPWFN 746.3 NQYVKL 771.3 VKLFPW
819.4 KLFPWF 836.4 PWFNQY 876.4 QYVKLFP
918.4 VKLFPWF 933.4 LFPWFNQ 934.4 YVKLFPW
935.4 PWFNQYV 966.4 WFNQYVK 1061.5 KLFPWFNQ

1063.5 PWFNQYVK 1079.5 WFNQYVKL 1096.5 LFPWFNQY
1176.5 NQYVKLFPW 1195.6 LFPWFNQYV 1210.6 FPWFNQYVK
1224.6 KLFPWFNQY

FIGURE 4.15 Values from Figure 4.14 corresponding to masses of subpeptides of
Tyrocidine B1, with maxCharge = 1 and an allowable discrepancy of up to 0.3 Da.
These 31 masses represent less than a third of the 95 subpeptides in the theoretical
spectrum of Tyrocidine B1.
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Only 31 of these 95 mass/charge ratios (shown in bold in Figure 4.14) can be matched
to subpeptides of Tyrocidine B1, as illustrated in Figure 4.15.

You can now see that sequencing Tyrocidine B1 from a real spectrum, for which two-
thirds of all masses are false, presents a much more difficult problem than sequencing
this peptide from the simulated Spectrum25. In the following challenge problem, you
will need to further develop the methods we studied in this chapter to analyze a real
spectrum.

CHALLENGE PROBLEM: Tyrocidine B1 is just one of many known NRPsTyrocidine B1 is just one of many known NRPs
produced byproduced by Bacillus brevisBacillus brevis. A single bacterial species may produce dozens of. A single bacterial species may produce dozens of
different antibiotics, and even after 70 years of research, there are likely undis-different antibiotics, and even after 70 years of research, there are likely undis-
covered antibiotics produced bycovered antibiotics produced by Bacillus brevisBacillus brevis. Try to sequence the tyrocidine. Try to sequence the tyrocidine
corresponding to the real experimental spectrum below. Since the fragmentationcorresponding to the real experimental spectrum below. Since the fragmentation
technology used for generating this spectrum tends to produce ions with chargetechnology used for generating this spectrum tends to produce ions with charge
+1, you can safely assume that all charges are +1.+1, you can safely assume that all charges are +1.

371.5 375.4 390.4 392.2 409.0 420.2 427.2 443.3 446.4 461.3371.5 375.4 390.4 392.2 409.0 420.2 427.2 443.3 446.4 461.3
471.4 477.4 491.3 505.3 506.4 519.2 536.1 546.5 553.3 562.3471.4 477.4 491.3 505.3 506.4 519.2 536.1 546.5 553.3 562.3
588.2 600.3 616.2 617.4 618.3 633.4 634.4 636.2 651.5 652.4588.2 600.3 616.2 617.4 618.3 633.4 634.4 636.2 651.5 652.4
702.5 703.4 712.5 718.3 721.0 730.3 749.4 762.6 763.4 764.4702.5 703.4 712.5 718.3 721.0 730.3 749.4 762.6 763.4 764.4
779.6 780.4 781.4 782.4 797.3 862.4 876.4 877.4 878.6 879.4779.6 780.4 781.4 782.4 797.3 862.4 876.4 877.4 878.6 879.4
893.4 894.4 895.4 896.5 927.4 944.4 975.5 976.5 977.4 979.4893.4 894.4 895.4 896.5 927.4 944.4 975.5 976.5 977.4 979.4

1005.5 1007.5 1022.5 1023.7 1024.5 1039.5 1040.3 1042.5 1043.4 1057.51005.5 1007.5 1022.5 1023.7 1024.5 1039.5 1040.3 1042.5 1043.4 1057.5
1119.6 1120.6 1137.6 1138.6 1139.5 1156.5 1157.6 1168.6 1171.6 1185.41119.6 1120.6 1137.6 1138.6 1139.5 1156.5 1157.6 1168.6 1171.6 1185.4
1220.6 1222.5 1223.6 1239.6 1240.6 1250.5 1256.5 1266.5 1267.5 1268.61220.6 1222.5 1223.6 1239.6 1240.6 1250.5 1256.5 1266.5 1267.5 1268.6

HintHint: since the peptide from which this spectrum was generated is in the tyroci-: since the peptide from which this spectrum was generated is in the tyroci-
dine family, this peptide should be similar to Tyrocidine B1.dine family, this peptide should be similar to Tyrocidine B1.

Open Problems

The Beltway and Turnpike Problems

In the case of the alphabet of arbitrary integers, the Cyclopeptide Sequencing Problem
corresponds to a computer science problem known as the Beltway Problem. The
Beltway Problem asks you to find a set of points on a circle such that the distances
between all pairs of points (where distance is measured around the circle) match a given
collection of integers.
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The Beltway Problem’s analogue in the case when the points lie along a line seg-
ment instead of on a circle is called the Turnpike Problem. The terms “beltway” and
“turnpike” arise from an analogy with exits on circular and linear roads, respectively.
In the case of n points on a circle and line, the inputs for the Beltway and Turnpike
Problems consist of n(n� 1) + 2 and n(n�1)

2 + 2 distances, respectively (these formulas
include the distance 0 as well as the length of the entire segment).

Various attempts to design polynomial algorithms for the Beltway and Turnpike
Problems (or to prove that they are intractable) have failed. However, there is a pseudo-
polynomial algorithm for the Turnpike Problem (see DETOUR: Pseudo-polynomial PAGEPAGE 219219
Algorithm for the Turnpike Problem). In contrast to a truly polynomial algorithm,
which can be bounded by a polynomial in the length of the input, a pseudo-polynomial
algorithm for the Turnpike Problem is polynomial in the total length of the line segment.
For example, if n points are separated by huge distances, say on the order of 2100, then
a polynomial algorithm would still be fast, whereas a pseudo-polynomial algorithm
would be prohibitively slow. Note that although the distances themselves will be huge,
each distance can be stored using only about 100 bits, implying that the length of the
input is small even for such large distances.

Pseudo-polynomial algorithms are useful in practice because practical instances
of the problems typically do not include huge distances. Interestingly, although a
pseudo-polynomial algorithm exists for the Turnpike Problem, such an algorithm for
the seemingly similar Beltway Problem remains undiscovered. Can you develop such
an algorithm?

Sequencing cyclic peptides in primates

Bacteria and fungi do not have a monopoly on producing cyclic peptides; animals
and plants make them too (albeit through a completely different mechanism). The first
cyclic peptide found in animals (called ✓-defensin) was discovered in 1999 in macaques.
✓-defensin prevents viruses from entering cells and has strong anti-HIV activity. Yet the
question of how primates make ✓-defensin remains a mystery.

Needless to say, there is no 54-mer in the macaque genome encoding the 18 amino
acid-long ✓-defensin. Instead, this cyclic peptide is formed by concatenating two 9
amino acid-long peptides excised from two different proteins called RTD1a and RTD1b,
as shown in Figure 4.16. It remains unclear which enzymes do this elaborate cutting
and pasting.

Interestingly, macaques and baboons produce ✓-defensin, whereas humans and
chimpanzees do not. This discrepancy makes us wonder whether a mutation occurred
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…KGLRCICTRGFCRLL

…RGLRCLCRRGVCQLL

CRCLCR
R
G
VRCICT
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RTD1a

RTD1b

-defensin

FIGURE 4.16 The 18 amino acid-long ✓-defensin peptide is formed by cutting two 9
amino acid-long peptides RCICTRGFC and RCLCRRGVC from the RTD1a and RTD1b
proteins, concatenating them, and then circularizing the resulting peptide (along with
introducing three disulfide bridges that form bonds across the peptide).

in the human-chimpanzee ancestor that resulted in the loss of this very useful peptide.
Interestingly, genes very similar to RTD1a and RTD1b do exist in humans, but a codon
in one of these genes mutated into a stop codon, thus shortening the encoded protein.
Since this stop codon is located before the 9 amino acid-long peptide contributing to
✓-defensin, humans do not produce this peptide and thus cannot produce ✓-defensin.

In a remarkable experiment, Alexander Cole demonstrated that humans could get ✓-
defensin back! Certain drugs can force the ribosome to ignore stop codons and continue
translating RNA, even after encountering a stop codon. The researchers demonstrated
that after treatment with such a drug, human cells began producing the human version
of ✓-defensin. The surprising conclusion of this experiment is that although humans
and chimpanzees lost ✓-defensin millions of years ago, we still possess the mysterious
enzymes required to cut and paste its constituent peptides.

Some biologists believe that since the enzymes making ✓-defensin still work in
humans, they must be needed for something else. If these enzymes did not provide
some selective advantage, then over time, mutations would cause their genes to become
pseudogenes, or non-functional remnants of previously working genes. The most
natural explanation for why these enzymes are still functional is that humans produce
still undiscovered cyclic peptides, and that the enzymes needed for ✓-defensin are
also used to “cut-and-paste” other (still undiscovered) cyclic peptides. The hypothesis
that we may possess undiscovered cyclic peptides is not as improbable as you might
think because biologists still lack robust algorithms for cyclopeptide discovery from the
billions of spectra generated in hundreds of labs analyzing the human proteome.

By default, researchers assume that all spectra ever acquired in human proteome
studies originated from linear peptides. Could they be wrong? Can you devise a fast
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cyclopeptide sequencing algorithm that can analyze all these spectra and hopefully
discover human cyclopeptides?

Charging Stations

Generating the theoretical spectrum of a peptide

Given an amino acid string Peptide, we will begin by assuming that it represents a linear
peptide. Our approach to generating its theoretical spectrum is based on the assumption
that the mass of any subpeptide is equal to the difference between the masses of
two prefixes of Peptide. We can compute an array PREFIXMASS storing the masses of
each prefix of Peptide in increasing order, e.g., for Peptide = NQEL, PREFIXMASS =

(0, 114, 242, 371, 484). Then, the mass of the subpeptide of Peptide beginning at position
i + 1 and ending at position j can be computed as PREFIXMASS(j)� PREFIXMASS(i).
For example, when Peptide = NQEL,

MASS(QE) = PREFIXMASS(3)� PREFIXMASS(1) = 371� 114 = 257 .

The following pseudocode implements this idea. It also represents the alphabet of
20 amino acids and their integer masses as a pair of 20-element arrays AMINOACID

and AMINOACIDMASS, corresponding to the top and bottom rows of Figure 4.6, re-
spectively.

LINEARSPECTRUM(Peptide, AMINOACID, AMINOACIDMASS)
PREFIXMASS(0) 0
for i 1 to |Peptide|

for j 1 to 20
if AMINOACID(j) = i-th amino acid in Peptide

PREFIXMASS(i) PREFIXMASS(i� 1) + AMINOACIDMASS(j)

LinearSpectrum a list consisting of the single integer 0
for i 0 to |Peptide|� 1

for j i + 1 to |Peptide|
add PREFIXMASS(j)� PREFIXMASS(i) to LinearSpectrum

return the sorted list LinearSpectrum

4J

If the amino acid string Peptide represents a cyclic peptide instead, then the masses in its
theoretical spectrum can be divided into those found by LINEARSPECTRUM and those
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corresponding to subpeptides wrapping around the end of the linearized version of
Peptide. Furthermore, each such subpeptide has mass equal to the difference between
MASS(Peptide) and a subpeptide mass identified by LINEARSPECTRUM. For example,
when Peptide = NQEL,

MASS(LN) = MASS(NQEL)�MASS(QE) = 484� 257 = 227 .

Thus, we can generate a cyclic spectrum by making only a small modification to the
pseudocode of LINEARSPECTRUM.

CYCLICSPECTRUM(Peptide, AMINOACID, AMINOACIDMASS)
PREFIXMASS(0) 0
for i 1 to Peptide

for j 1 to 20
if AMINOACID(j) = i-th amino acid in Peptide

PREFIXMASS(i) PREFIXMASS(i� 1) + AMINOACIDMASS(j)

peptideMass PREFIXMASS(|Peptide|)
CyclicSpectrum a list consisting of the single integer 0
for i 0 to |Peptide|� 1

for j i + 1 to |Peptide|
add PREFIXMASS(j)� PREFIXMASS(i) to CyclicSpectrum
if i > 0 and j < |Peptide|

add peptideMass - (PREFIXMASS(j)� PREFIXMASS(i)) to CyclicSpectrum

return sorted list CyclicSpectrum

How fast is CYCLOPEPTIDESEQUENCING?

Let’s run CYCLOPEPTIDESEQUENCING on the following Spectrum:

0 97 97 99 101 103 196 198 198 200 202

295 297 299 299 301 394 396 398 400 400 497

CYCLOPEPTIDESEQUENCING first expands the set Peptides into the set of all 1-mers
consistent with Spectrum:

97 99 101 103
P V T C
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The algorithm next appends each of the 18 amino acid masses to each of the 1-mers
above. The resulting set Peptides containing 4 · 18 = 72 peptides of length 2 is then
trimmed to keep only the 10 peptides that are consistent with Spectrum:

97-99 97-101 97-103 99-97 99-101
PV PT PC VP VT

99-103 101-97 101-99 103-97 103-99
VC TP TV CP CV

After expansion and trimming in the next iteration, the set Peptides contains 15 consistent
3-mers:

97-99-103 97-99-101 97-101-97 97-101-99 97-103-99
PVC PVT PTP PTV PCV

99-97-103 99-97-101 99-101-97 99-103-97 101-97-99
VPC VPT VTP VCP TPV

101-97-103 101-99-97 103-97-101 103-97-99 103-99-97
TPC TVP CPT CPV CVP

With one more iteration, the set Peptides contains ten consistent 4-mers. Observe that
the six 3-mers highlighted in red above failed to expand into any 4-mers below, and so
we now know that CYCLOPEPTIDESEQUENCING may generate some incorrect k-mers
at intermediate iterations.

97-99-103-97 97-101-97-99 97-101-97-103 97-103-99-97
PVCP PTPV PTPC PCVP

99-97-101-97 99-103-97-101 101-97-99-103 101-97-103-99
VPTP VCPT TPVC TPCV

103-97-101-97 103-99-97-101
CPTP CVPT

In the final iteration, we generate ten consistent 5-mers:

213



C H A P T E R 4

97-99-103-97-101 97-101-97-99-103 97-101-97-103-99
PVCPT PTPVC PTPCV

97-103-99-97-101 99-97-101-97-103 99-103-97-101-97
PCVPT VPTPC VCPTP

101-97-99-103-97 101-97-103-99-97 103-97-101-97-99
TPVCP TPCVP CPTPV

103-99-97-101-97
CVPTP

All these linear peptides correspond to the same cyclic peptide PVCPT, thus solving the
Cyclopeptide Sequencing Problem. You can verify that CYCLOPEPTIDESEQUENCING

also quickly reconstructs Tyrocidine B1 from the spectrum in Figure 4.7.

Trimming the peptide leaderboard

Note: This Charging Station uses some notation from CHARGING STATION: Gener-
PAGE

211
ating the Theoretical Spectrum of a Peptide.

To implement the TRIM function in LEADERBOARDCYCLOPEPTIDESEQUENCING,
we first will generate the theoretical spectra of all linear peptides from Leaderboard.
Then, we will compute the scores of each theoretical spectrum against an experimental
spectrum Spectrum. This requires implementing LINEARSCORE(Peptide, Spectrum).4K

Figure 4.17 shows a leaderboard of ten linear peptides represented as a list Leader-
board along with a ten-element array LINEARSCORES containing their scores.

Leaderboard PVT PTP PTV PCP VPC VTP VCP TPV TPC TVP
LINEARSCORES 6 2 4 6 5 2 5 4 4 3

FIGURE 4.17 A collection of peptides Leaderboard (top) along with an array
LINEARSCORES (bottom) holding the score of each peptide.

The TRIM algorithm, shown below, sorts all peptides in Leaderboard according to
their scores, resulting in a sorted Leaderboard (Figure 4.18). TRIM then retains the top N
scoring peptides including ties (e.g., for N = 5, the seven top-scoring peptides shown in
blue will be retained), and removes all other peptides from Leaderboard.
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TRIM(Leaderboard, Spectrum, N, AMINOACID, AMINOACIDMASS)
for j 1 to |Leaderboard|

Peptide j-th peptide in Leaderboard
LINEARSCORES(j) LINEARSCORE(Peptide, Spectrum)

sort Leaderboard according to the decreasing order of scores in LINEARSCORES

sort LINEARSCORES in decreasing order
for j N + 1 to |Leaderboard|

if LINEARSCORES(j) < LINEARSCORES(N)

remove all peptides starting from the j-th peptide from Leaderboard
return Leaderboard

return Leaderboard

4L

Leaderboard PVT PCP VPC VCP PTV TPV TPC TVP PTP VTP
LINEARSCORES 6 6 5 5 4 4 4 3 2 2

FIGURE 4.18 Arrays Leaderboard and LINEARSCORES from Figure 4.17 sorted according
to score. The seven highest-scoring peptides, which will be retained after applying
TRIM with N = 5, are shown in blue; remaining peptides are shown in red and will be
removed from the leaderboard.

Detours

Gause and Lysenkoism

The term Lysenkoism refers to the politicization of genetics in the Soviet Union that
began in the late 1920s and lasted for three decades until the death of Stalin. Lysenkoism
was built on theories of inheritance by acquired characteristics, which ran counter to
Mendelian laws.

In 1928, Trofim Lysenko, the son of Ukrainian peasants, claimed to have found a
way to vastly increase the crop yield of wheat. During Stalin’s rule, Soviet propaganda
focused on inspirational stories of working class citizens, and it portrayed Lysenko as
a genius, even though he had manufactured his experimental data. Empowered by
his sudden hero status, Lysenko denounced genetics and started promoting his own
“scientific” views. He called geneticists “fly lovers and people haters” and claimed that
they were trying to undermine the onward march of Soviet agriculture.
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Gause found himself among the few Soviet biologists who were not afraid of publicly
denouncing Lysenko. By 1935, Lysenko announced that by opposing his theories,
geneticists were directly opposing the teachings of Marxism. Stalin, who was in the
audience, was the first to applaud, calling out, “Bravo, Comrade Lysenko!” This event
gave Lysenko free reign to slander any geneticists who spoke out against him; many of
Lysenkoism’s opponents were imprisoned or even executed.

After World War II, Lysenko did not forget Gause’s criticism: Lysenko’s supporters
demanded that Gause be expelled from the Russian Academy of Sciences. Lysenkoists
made various attempts to invite Gause to denounce genetics and accept their pseudo-
science. Gause was probably the only Soviet biologist at that time who could simply
ignore such “invitations”, the only other contemporary opponents of Lysenkoism being
top Soviet nuclear physicists. However, Stalin left Gause and the physicists alone; in
Stalin’s mind, the development of antibiotics and the atomic bomb were too important.
In 1949, when the director of the Russian secret police (Lavrentiy Beria) told Stalin of the
dissident scientists, Stalin responded, “Make sure that our scientists have everything
needed to do their job”, adding, “there will always be time to execute them [later]”.

Discovery of codons

In 1961, Sydney Brenner and Francis Crick established the rule of “one codon, one
amino acid” during protein translation. They observed that deleting a single nucleotide
or two consecutive nucleotides in a gene dramatically altered the protein product. Para-
doxically, deleting three consecutive nucleotides resulted in only minor changes in the
protein. For example, the phrase

THE · SLY · FOX · AND · THE · SHY · DOG

turns into gibberish after deleting one letter:

THE · SYF · OXA · NDT · HES · HYD · OG

or after deleting two letters:

THE · SFO · XAN · DTH · ESH · YDO · G

but it makes sense after deleting three letters:
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THE · FOX · AND · THE · SHY · DOG

In 1964, Charles Yanofsky demonstrated that a gene and the protein that it produces
are collinear, meaning that the first codon codes for the first amino acid in the protein,
the second codon codes for the second amino acid, etc. For the next thirteen years,
biologists believed that a protein was encoded by a long string of contiguous nucleotide
triplets. However, the discovery of split genes in 1977 proved otherwise and necessi-
tated the computational problem of predicting the locations of genes using only the
genomic sequence (see DETOUR: Split Genes). PAGEPAGE 220220

Quorum sensing

The traditional view that bacteria act as loners and have few interactions with the
rest of their colony has been challenged by the discovery of a communication method
called quorum sensing. This finding has shown that bacteria are capable of coordinated
activity when migrating to a better nutrient supply or adopting a biofilm formation
for defense within hostile environments. The “language” used in quorum sensing is
often based on the exchange of peptides (as well as other molecules) called bacterial
pheromones. The nature of communications between bacteria can be amicable or
adversarial.

When a single bacterium releases pheromones into its environment, their concen-
tration is often too low to be detected; however, once the population density increases,
pheromone concentrations reach a threshold level that allows the bacteria to activate
certain genes in response.

For example, Burkholderia cepacia is a pathogen affecting individuals with cystic
fibrosis. Most patients colonized with B. cepacia are coinfected with Pseudomonas aerugi-
nosa. The correlation of the two strains in these patients led biologists to hypothesize
that interspecies communication with P. aeruginosa may help B. cepacia enhance its
own pathogenicity. Indeed, the addition of P. aeruginosa to clones of B. cepacia results
in a significant increase in the synthesis of proteases (i.e., enzymes needed to break
down proteins), suggesting the presence of quorum sensing — B. cepacia may profit
from pheromones made by a different species in order to improve its own chances of
survival.

Molecular mass

The dalton (abbreviated Da) is the unit used for measuring atomic masses on a molecu-
lar scale. One dalton is equivalent to one twelfth of the mass of carbon-12 and has a
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value of approximately 1.66 · 10�27 kg. The monoisotopic mass of a molecule is equal
to the sum of the masses of the atoms in that molecule, using the mass of the most
abundant isotope for each element. Figure 4.19 provides the elemental composition
and monoisotopic masses of all 20 standard amino acids.

Amino acid 3-letter code Chemical formula Mass (Da)
Alanine Ala C3H5NO 71.03711

Cysteine Cys C3H5NOS 103.00919
Aspartic acid Asp C4H5NO3 115.02694

Glutamic acid Glu C5H7NO3 129.04259
Phenylalanine Phe C9H9NO 147.06841

Glycine Gly C2H3NO 57.02146
Histidine His C6H7N3O 137.05891

Isoleucine Ile C6H11NO 113.08406
Lysine Lys C6H12N2O 128.09496

Leucine Leu C6H11NO 113.08406
Methionine Met C5H9NOS 131.04049
Asparagine Asn C4H6N2O2 114.04293

Proline Pro C5H7NO 97.05276
Glutamine Gln C5H8N2O2 128.05858

Arginine Arg C6H12N4O 156.10111
Serine Ser C3H5NO2 87.03203

Threonine Thr C4H7NO2 101.04768
Valine Val C5H9NO 99.06841

Tryptophan Trp C11H10N2O 186.07931
Tyrosine Tyr C9H9NO2 163.06333

FIGURE 4.19 Elemental composition and monoisotopic masses of amino acids.

Selenocysteine and pyrrolysine

Selenocysteine is a proteinogenic amino acid that exists in all kingdoms of life as a
building block of a special class of proteins called selenoproteins. Unlike other amino
acids, selenocysteine is not directly encoded in the genetic code. Instead, it is encoded
in a special way by a UGA codon, which is normally a stop codon, through a mechanism
known as translational recoding.

Pyrrolysine is a proteinogenic amino acid that exists in some archaea and methane-
producing bacteria. In organisms incorporating pyrrolysine, this amino acid is encoded
by UAG, which also normally acts as a stop codon.
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Pseudo-polynomial algorithm for the Turnpike Problem

If A = (a1 = 0, a2, . . . , an) is a set of n points on a line segment in increasing order
(a1 < a2 < · · · < an), then DA denotes the collection of all pairwise differences between
points in A. For example, if A = (0, 2, 4, 7), then

DA = (�7,�5,�4,�3,�2,�2, 0, 0, 0, 0, 2, 2, 3, 4, 5, 7) .

The turnpike problem asks us to reconstruct A from DA.

Turnpike Problem:
Given all pairwise distances between points on a line segment, reconstruct the positions
of those points.

Input: A collection of integers L.
Output: A set of integers A such that DA = L.

4M

We will now outline an approach to solving the Turnpike Problem that is polynomial
in the length of the line segment. Given a collection of integers A = (a1, . . . , an), the
generating function of A is the polynomial

A(x) = Ân
i=1 xai .

For example, if A = (0, 2, 4, 7), then

A(x) = x0 + x2 + x4 + x7

DA(x) = x�7 + x�5 + x�4 + x�3 + 2x�2 + 4x0 + 2x2 + x3 + x4 + x5 + x7

You can verify that the above generating function for DA(x) is equal to A(x) · A(x�1).
Thus, the Turnpike Problem reduces to a problem about polynomial factorization. Just
as an integer can be broken down into its prime factors, a polynomial with integer
coefficients can be factored into “prime” polynomials having integer coefficients. If
we can factor DA(x) and determine which prime factors contribute to A(x) and which
prime factors contribute to A(x�1), then we will know A(x) and therefore A. In 1982,
Rosenblatt and Seymour described such a method to represent DA(x) as A(x) · A(x�1).
Since a polynomial can be factored in time polynomial in its maximum exponent, DA(x)
can be factored in time polynomial in the total length of the line segment, which yields
the desired pseudo-polynomial algorithm for the Turnpike Problem.
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STOP and Think: Can the generating function approach be modified to address
the case when there are errors in the pairwise differences?

Split genes

In 1977, Phillip Sharp and Richard Roberts independently discovered split genes, which
are genes formed by discontiguous intervals of DNA.

Sharp hybridized RNA encoding an adenovirus protein called hexon against a
single-strand of adenovirus DNA. If the hexon gene were contiguous, then he expected
to see a one-to-one hybridization of RNA bases with DNA bases.

Yet to Sharp’s surprise, when he viewed the RNA-DNA hybridization under an
electron microscope, he saw three loop structures, rather than the continuous duplex
segment suggested by the contiguous gene model (Figure 4.20). This observation
implied that the hexon mRNA must be built from four non-contiguous fragments of
the adenovirus genome. These four segments, called exons, are separated by three
fragments (the loops in Figure 4.20) called introns, to form a split gene. Split genes are
analogous to a magazine article printed on pages 12, 17, 40, and 95, with many pages of
advertising appearing in-between.

DNA 

mRNA 

FIGURE 4.20 A rendering of Sharp’s electron microscopy experiment that led to the
discovery of split genes. When hexon RNA is hybridized against the DNA that generated
it, three distinct loops are formed. Because the loops are present in the DNA and are
not present in RNA, these loops (called introns) must be removed during the process of
RNA formation.

The discovery of split genes caused an interesting quandary: What happens to the
introns? In other words, the RNA that is transcribed from a split gene (called precursor
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mRNA or pre-mRNA) should be longer than the RNA that is used as a template for
protein synthesis (called messenger RNA or mRNA). Some biological process must
remove the introns in pre-mRNA and concatenate the exons into a single mRNA string.
This process of converting pre-mRNA into mRNA is known as splicing, and it is carried
out by a molecular machine called the spliceosome.

The discovery of split genes led to many new avenues of research. Biologists still
debate what purpose introns serve; some introns are viewed as “junk DNA”, while
others contain important regulatory elements. Furthermore, the partition of a gene into
exons often varies from species to species. For example, a gene in the chicken genome
may have a different number of exons than the related gene in the human genome.

Bibliography Notes

The pseudo-polynomial algorithm for the Turnpike Problem was proposed by Rosen-
blatt and Seymour, 1982. The first cyclopeptide sequencing algorithm was proposed
by Ng et al., 2009. Tang et al., 1999 discovered ✓-defensin. Venkataraman et al., 2009
showed that humans cells can be tricked into producing ✓-defensin.
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Cracking the Non-Ribosomal Code

The RNA Tie Club

Following Watson & Crick’s publication of DNA’s double helix structure in 1953, physi-
cist George Gamow founded the “RNA Tie Club” for renowned scientists. A necktie
embroidered with a double helix signified membership in this club, which was restricted
to twenty regular members (one for each amino acid) as well as four honorary members
(one for each nucleotide). Gamow wanted the RNA Tie Club to serve more than a social
function; by convening top scientific minds, he hoped to decode the message hidden
within DNA by determining how RNA is converted into amino acids. Indeed, Sydney
Brenner and Francis Crick struck first one year later by discovering that amino acids
are translated from codons (i.e., triplets of nucleotides).

The RNA Tie Club would eventually boast eight Nobel laureates, but scientists
from outside of the club would decipher the genetic code. In 1961, Marshall Niren-
berg synthesized RNA strands consisting only of uracil (UUUUUUUUUUUU. . . ), added
ribosomes and amino acids, and produced a peptide consisting only of phenylalanine
(PhePhePhePhe. . . ). Nirenberg thus concluded that the RNA codon UUU codes for
the amino acid phenylalanine. Following Nirenberg’s success, Har Gobind Khorana
synthesized the RNA strand UCUCUCUCUCUC. . . and demonstrated that it translates
into SerLeuSerLeu. . . Following these insights, the rest of the ribosomal genetic code
was rapidly elucidated.

Nearly four decades later, Mohamed Marahiel set out to solve the much more
challenging puzzle of cracking the non-ribosomal code. You will recall from Chapter 4
that bacteria and fungi produce antibiotics and other non-ribosomal peptides (NRPs)
without any reliance on the ribosome and the genetic code. Instead, these organisms
manufacture NRPs by employing a giant protein called NRP synthetase:

DNA �! RNA �! NRP synthetase �! NRP

The NRP synthetase that encodes the 10 amino acid-long antibiotic Tyrocidine B1 (which
we worked with in Chapter 4) includes 10 segments called adenylation domains (A-
domains); each A-domain is about 500 amino acids long and is responsible for adding
a single amino acid to Tyrocidine B1.

A generation earlier, the RNA Tie Club had asked, “How does RNA encode an
amino acid?” Now Marahiel set out to answer the far more challenging question, “How
does each A-domain encode an amino acid?”
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From protein comparison to the non-ribosomal code

Fortunately, Marahiel already knew the amino acid sequences of some A-domains,
along with the amino acids that they add to the growing peptide. Below are three of
these A-domains (taken from three different bacteria), which code for aspartic acid
(Asp), ornithine (Orn), and valine (Val), respectively. In the interest of space, we will
show you only short fragments taken from the three A-domains.

YAFDLGYTCMFPVLLGGGELHIVQKETYTAPDEIAHYIKEHGITYIKLTPSLFHTIVNTASFAFDANFESLRLIVLGGEKIIPIDVIAFRKMYGHTEFINHYGPTEATIGA
AFDVSAGDFARALLTGGQLIVCPNEVKMDPASLYAIIKKYDITIFEATPALVIPLMEYIYEQKLDISQLQILIVGSDSCSMEDFKTLVSRFGSTIRIVNSYGVTEACIDS
IAFDASSWEIYAPLLNGGTVVCIDYYTTIDIKALEAVFKQHHIRGAMLPPALLKQCLVSAPTMISSLEILFAAGDRLSSQDAILARRAVGSGVYNAYGPTENTVLS

STOP and Think: You now have a portion of the data that Marahiel had in 1999
when he discovered the non-ribosomal code. What would you do to infer the
non-ribosomal code?

Marahiel conjectured that since A-domains have similar function (i.e., adding an amino
acid to the growing peptide), different A-domains should have similar parts. A-domains
should also have differing parts to incorporate different amino acids. However, only
three conserved columns (shown in red below) are common to the three sequences and
have likely arisen by pure chance:

YAFDLGYTCMFPVLLGGGELHIVQKETYTAPDEIAHYIKEHGITYIKLTPSLFHTIVNTASFAFDANFESLRLIVLGGEKIIPIDVIAFRKMYGHTEFINHYGPTEATIGA
AFDVSAGDFARALLTGGQLIVCPNEVKMDPASLYAIIKKYDITIFEATPALVIPLMEYIYEQKLDISQLQILIVGSDSCSMEDFKTLVSRFGSTIRIVNSYGVTEACIDS
IAFDASSWEIYAPLLNGGTVVCIDYYTTIDIKALEAVFKQHHIRGAMLPPALLKQCLVSAPTMISSLEILFAAGDRLSSQDAILARRAVGSGVYNAYGPTENTVLS

STOP and Think: How else are the three sequences similar?

If we slide the second sequence only one amino acid to the right, adding a space symbol
("-") to the beginning of the sequence, then we find 11 conserved columns!

YAFDLGYTCMFPVLLGGGELHIVQKETYTAPDEIAHYIKEHGITYIKLTPSLFHTIVNTASFAFDANFESLRLIVLGGEKIIPIDVIAFRKMYGHTEFINHYGPTEATIGA
-AFDVSAGDFARALLTGGQLIVCPNEVKMDPASLYAIIKKYDITIFEATPALVIPLMEYIYEQKLDISQLQILIVGSDSCSMEDFKTLVSRFGSTIRIVNSYGVTEACIDS
IAFDASSWEIYAPLLNGGTVVCIDYYTTIDIKALEAVFKQHHIRGAMLPPALLKQCLVSAPTMISSLEILFAAGDRLSSQDAILARRAVGSGVYNAYGPTENTVLS

Adding a few more space symbols reveals 14 conserved columns:

YAFDLGYTCMFPVLLGGGELHIVQKETYTAPDEIAHYIKEHGITYIKLTPSLFHTIVNTASFAFDANFESLRLIVLGGEKIIPIDVIAFRKMYGHTEFINHYGPTEATIGA
-AFDVSAGDFARALLTGGQLIVCPNEVKMDPASLYAIIKKYDITIFEATPALVIPLMEYI-YEQKLDISQLQILIVGSDSCSMEDFKTLVSRFGSTIRIVNSYGVTEACIDS
IAFDASSWEIYAPLLNGGTVVCIDYYTTIDIKALEAVFKQHHIRGAMLPPALLKQCLVSA----PTMISSLEILFAAGDRLSSQDAILARRAVGSGVYNAYGPTENTVLS

and even more sliding reveals 19 conserved columns:

YAFDLGYTCMFPVLLGGGELHIVQKETYTAPDEIAHYIKEHGITYIKLTPSLFHTIVNTASFAFDANFESLRLIVLGGEKIIPIDVIAFRKMYGHTE-FINHYGPTEATIGA
-AFDVSAGDFARALLTGGQLIVCPNEVKMDPASLYAIIKKYDITIFEATPALVIPLMEYI-YEQKLDISQLQILIVGSDSCSMEDFKTLVSRFGSTIRIVNSYGVTEACIDS
IAFDASSWEIYAPLLNGGTVVCIDYYTTIDIKALEAVFKQHHIRGAMLPPALLKQCLVSA----PTMISSLEILFAAGDRLSSQDAILARRAVGSGV-Y-NAYGPTENTVLS
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It turns out that the red columns represent the conserved core shared by many
A-domains. Now that Marahiel knew how to correctly align the A-domains, he hy-
pothesized that some of the remaining variable columns should code for Asp, Orn,
and Val. He discovered that the non-ribosomal code is defined by 8 amino acid-long
non-ribosomal signatures, which are shown as purple columns below.

YAFDLGYTCMFPVLLGGGELHIVQKETYTAPDEIAHYIKEHGITYIKLTPSLFHTIVNTASFAFDANFESLRLIVLGGEKIIPIDVIAFRKMYGHTE-FINHYGPTEATIGA
-AFDVSAGDFARALLTGGQLIVCPNEVKMDPASLYAIIKKYDITIFEATPALVIPLMEYI-YEQKLDISQLQILIVGSDSCSMEDFKTLVSRFGSTIRIVNSYGVTEACIDS
IAFDASSWEIYAPLLNGGTVVCIDYYTTIDIKALEAVFKQHHIRGAMLPPALLKQCLVSA----PTMISSLEILFAAGDRLSSQDAILARRAVGSGV-Y-NAYGPTENTVLS

The purple columns define the signatures LTKVLGHIG, VGEIVGSID, and AWMFAAAVL,
coding for Asp, Orn, and Val, respectively:

LTKVGHIG ! Asp
VGEIGSID ! Orn
AWMFAAVL ! Val

It is important to note that without first constructing the conserved core, Marahiel
would not have been able to infer the non-ribosomal code, since the 24 amino acids in
the signatures above do not line up in the original alignment:

YAFDLGYTCMFPVLLGGGELHIVQKETYTAPDEIAHYIKEHGITYIKLTPSLFHTIVNTASFAFDANFESLRLIVLGGEKIIPIDVIAFRKMYGHTEFINHYGPTEATIGA
AFDVSAGDFARALLTGGQLIVCPNEVKMDPASLYAIIKKYDITIFEATPALVIPLMEYIYEQKLDISQLQILIVGSDSCSMEDFKTLVSRFGSTIRIVNSYGVTEACIDS
IAFDASSWEIYAPLLNGGTVVCIDYYTTIDIKALEAVFKQHHIRGAMLPPALLKQCLVSAPTMISSLEILFAAGDRLSSQDAILARRAVGSGVYNAYGPTENTVLS

Even after identifying the conserved core, you may be wondering whether Marahiel
had a crystal ball; why did he choose these particular 8 purple columns? Why should
signatures have 8 amino acids and not 5, or better yet 3? See DETOUR: Fireflies and PAGEPAGE 282282
the Non-Ribosomal Code for a better appreciation of the complexities underlying
Marahiel’s work. Suffice it to say that fifteen years after Marahiel’s initial discovery, the
non-ribosomal code is still not fully understood.

What do oncogenes and growth factors have in common?

Marahiel’s cracking of the non-ribosomal code is just one of many biological problems
that have benefited from sequence comparison. Another striking example of the power
of sequence comparison was established in 1983 when Russell Doolittle compared the
newly sequenced platelet derived growth factor (PDGF) gene with all other genes
known at the time. Doolittle stunned cancer biologists when he showed that PDGF
was very similar to the sequence of a gene known as v-sis. The two genes’ similarity
was puzzling because their functions differ greatly; the PDGF gene encodes a protein
stimulating cell growth, whereas v-sis is an oncogene, or a gene in viruses that causes
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a cancer-like transformation of infected human cells. Following Doolittle’s discovery,
scientists hypothesized that some forms of cancer might be caused by a good gene
doing the right thing at the wrong time. The link between PDGF and v-sis established a
new paradigm; searching all new sequences against sequence databases is now the first
order of business in genomics.

However, the question remains: what is the best way to compare sequences algo-
rithmically? Returning to the A-domain example, the insertion of spaces to reveal the
conserved core probably looked like a magic trick to you. It is completely unclear what
algorithm we have used to decide where to insert the space symbols, or how we should
quantify the “best” alignment of the three sequences.

Introduction to Sequence Alignment

Sequence alignment as a game

To simplify matters, we will compare only two sequences at a time, returning to multiple
sequence comparison at the end of the chapter. The Hamming distance, which counts
mismatches in two strings, rigidly assumes that we align the i-th symbol of one sequence
against the i-th symbol of the other. However, since biological sequences are subject
to insertions and deletions, it is often the case that the i-th symbol of one sequence
corresponds to a symbol at a completely different position in the other sequence. The
goal, then, is to find the most appropriate correspondence of symbols.

For example, ATGCATGC and TGCATGCA have no matching positions, and so their
Hamming distance is equal to 8:

ATGCATGC
TGCATGCA

Yet these strings have six matching positions if we align them differently:

ATGCATGC-
-TGCATGCA

Strings ATGCTTA and TGCATTAA have more subtle similarities:

ATGC-TTA-
-TGCATTAAA
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These examples lead us to postulate a notion of a good alignment as one that matches
as many symbols as possible. You can think about maximizing the number of matched
symbols in two strings as a single-person game (Figure 5.1). At each turn, you have two
choices. You can remove the first symbol from each sequence, in which case you earn a
point if the symbols match; alternatively, you can remove the first symbol from either of
the two sequences, in which case you earn no points but may set yourself up to earn
more points in later moves. Your goal is to maximize the number of points.

Sequence alignment and the longest common subsequence

We now define an alignment of sequences v and w as a two-row matrix such that the
first row contains the symbols of v (in order), the second row contains the symbols
of w (in order), and space symbols may be interspersed throughout both strings, as
long as two space symbols are not aligned against each other. Here is the alignment of
ATGTTATA and ATCGTCC from Figure 5.1.

A T - G T T A T A
A T C G T - C - C

An alignment presents one possible scenario by which v could have evolved into w.
Columns containing the same letter in both rows are called matches and represent con-
served nucleotides, whereas columns containing different letters are called mismatches
and represent single-nucleotide substitutions. Columns containing a space symbol are
called indels: a column containing a space symbol in the top row of the alignment is
called an insertion, as it implies the insertion of a symbol when transforming v into
w; a column containing a space symbol in the bottom row of the alignment is called
a deletion, as it indicates the deletion of a symbol when transforming v into w. The
alignment above has four matches, two mismatches, one insertion, and two deletions.

The matches in an alignment of two strings define a common subsequence of the
two strings, or a sequence of symbols appearing in the same order (although not neces-
sarily consecutively) in both strings. For example, the alignment in Figure 5.1 indicates
that ATGT is a common subsequence of ATGTTATA and ATCGTCC. An alignment of
two strings maximizing the number of matches therefore corresponds to a longest
common subsequence of these strings. Note that two strings may have more than one
longest common subsequence.
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Growing alignment Remaining symbols Score

A T G T T A T A
A T C G T C C

A T G T T A T A +1A T C G T C C

A T G T T A T A +1A T C G T C C

A T - G T T A T A
A T C G T C C

A T - G T T A T A +1A T C G T C C

A T - G T T A T A +1A T C G T C C

A T - G T T A T A
A T C G T - C C

A T - G T T A T A
A T C G T - C C

A T - G T T A T A
A T C G T - C - C

A T - G T T A T A
A T C G T - C - C

FIGURE 5.1 One way of playing the alignment game for the strings ATGTTATA and
ATCGTCC, with score 4. At each step, we choose to remove either one or both symbols
from the left of the two sequences in the “remaining symbols” column. If we remove
both symbols, then we align them in the “growing alignment”. If we remove only
one symbol, then we align this symbol with a space symbol in the growing alignment.
Matched symbols are shown in red (and receive score 1). Mismatched symbols are
shown in purple; symbols aligned against space symbols are shown in blue or green
depending on which sequence they were removed from.
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Longest Common Subsequence Problem:
Find a longest common subsequence of two strings.

Input: Two strings.
Output: A longest common subsequence of these strings.

If we limit our attention to the two A-domains coding for Asp and Orn from the intro-
duction, then in addition to the 19 matches that we have already found, we can find 10
more matches (shown in blue below), yielding a common subsequence of length 29.

YAFDLGYTCMFPVLLGGGELHIVQKETYTAPDEIAHYIKEHGITYIKLTPSLFHTIVNTASFAFDANFESLRLIVLGGEKIIPIDVIAFRKMYGHTE-FINHYGPTEATIGA
-AFDVSAGDFARALLTGGQLIVCPNEVKMDPASLYAIIKKYDITIFEATPALVIPLMEYI-YEQKLDISQLQILIVGSDSCSMEDFKTLVSRFGSTIRIVNSYGVTEACIDS

STOP and Think: What is the longest common subsequence of these strings?

None of the algorithmic approaches we have studied thus far will help us solve the
Longest Common Subsequence Problem, and so before asking you to solve this prob-
lem, we will change course to describe a different problem that may seem completely
unrelated to sequence alignment.

The Manhattan Tourist Problem

What is the best sightseeing strategy?

Imagine you are a tourist in Midtown Manhattan, and you want to see as many sights
as possible on your way from the corner of 59th Street and 8th Avenue to the corner of
42nd Street and 3rd Avenue (Figure 5.2 (left)). However, you are short on time, and at
each intersection, you can only move south (#) or east (!). You can choose from many
different paths through the map, but no path will visit all the sights. The challenge of
finding a legal path through the city that visits the most sights is called the Manhattan
Tourist Problem.

We will represent the map of Manhattan as a directed graph ManhattanGraph in
which we model each intersection as a node and each city block between two intersec-
tions as a directed edge indicating the legal direction of travel (# or!), as shown in
Figure 5.2 (right). We then assign each directed edge a weight equal to the number of
attractions along the corresponding block. The starting (blue) node is called the source
node, and the ending (red) node is called the sink node. Adding the weights along
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FIGURE 5.2 (Left) A simplification of Midtown Manhattan. You start at the intersection
of 59th Street and 8th Avenue in the northwest corner and end at the intersection of
42nd Street and 3rd Avenue in the southeast corner, traveling only south (#) or east
(!) between intersections. The attractions shown are: Carnegie Hall (1), Tiffany &
Co. (2), the Sony Building (3), the Museum of Modern Art (4), the Four Seasons Hotel
(5), St. Patrick’s Cathedral (6), the General Electric Building (7), Radio City Music
Hall (8), Rockefeller Center (9), the Paramount Building (10), the New York Times
Building (11), Times Square (12), the General Society of Mechanics and Tradesmen
(13), Grand Central Terminal (14), and the Chrysler Building (15). (Right) The directed
graph ManhattanGraph in which every edge is weighted by the number of attractions
along that city block (edge weights equal to 0 are not shown).
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a path from the source to the sink yields the number of attractions along that path.
Therefore, to solve the Manhattan Tourist Problem, we need to find a maximum-weight
path connecting the source to the sink (also called a longest path) in ManhattanGraph.

We can model any rectangular grid of streets using a similar directed graph; Fig-
ure 5.3 (left) shows the graph for a hypothetical city with even more attractions. In
contrast to the Cartesian plane, we orient the axes of this grid down and to the right.
Therefore, the blue source node is assigned the coordinates (0, 0), and the red sink node
is assigned the coordinates (n, m). This implies the following generalization of our
original problem.

Manhattan Tourist Problem:
Find a longest path in a rectangular city.

Input: A weighted n ⇥ m rectangular grid with n + 1 rows and m + 1
columns.
Output: A longest path from source (0, 0) to sink (n, m) in the grid.

01 342

3 6 5 2 1 

4 4 5 2 1

5

3 2 4 0

3 2 4 2

0 7 3 4

3 3 0 2

1 3 2 2

6 8 5 3

0 1 2 3 4

0 

1

2

3

4

01 342

3 6 5 2 1 

4 4 5 2 1

5

3 2 4 0

3 2 4 2

0 7 3 4

3 3 0 2

1 3 2 2

6 8 5 3

0 3 5 9

13 

15 19 

20 

23 

FIGURE 5.3 (Left) An n ⇥ m city grid represented as a graph with weighted edges for
n = m = 4. The bottom left node is indexed as (4, 0), and the upper right node is
indexed as (0, 4). (Right) A path through the graph found by the greedy algorithm is
not the longest path.

EXERCISE BREAK: How many different paths are there from source to sink in
an n⇥m rectangular grid?
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Applying a brute force approach to the Manhattan Tourist Problem is impractical be-
cause the number of paths is huge. A sensible greedy approach would choose between
the two possible directions at each node (! or #) according to how many attractions
you would see if you moved only one block south versus moving one block east. For
example, in Figure 5.3 (right), we start off by moving east from (0, 0) rather than south
because the horizontal edge has three attractions, while the vertical edge has only one.
Unfortunately, this greedy strategy may miss the longest path in the long run. Figure 5.3
(right).

STOP and Think: Find a longer path than the one in Figure 5.3 (right).

Sightseeing in an arbitrary directed graph

In reality, the streets in Midtown Manhattan do not form a perfect rectangular grid
because Broadway Avenue cuts diagonally across the grid, but the network of streets
can still be represented by a directed graph. In fact, the Manhattan Tourist Problem is
just a special case of the more general problem of finding the longest path in an arbitrary
directed graph, such as the ones in Figure 5.4.

Longest Path in a Directed Graph Problem:
Find a longest path between two nodes in an edge-weighted directed graph.

Input: An edge-weighted directed graph with source and sink nodes.
Output: A longest path from source to sink in the directed graph.

STOP and Think: What is the length of a longest path between the source and
sink in the directed graph shown in Figure 5.4 (right)?

If a directed graph contained a directed cycle (e.g., the four central edges of weight
1 in Figure 5.4 (right)), then a tourist could traverse this cycle indefinitely, revisiting
the same attractions over and over again and creating a path of huge length. For this
reason, the graphs that we will consider in this chapter do not contain directed cycles;
such graphs are called directed acyclic graphs (DAGs).

232



H O W D O W E C O M PA R E D N A S E Q U E N C E S ?

1 3

4

2

3 6 5
2

1 

4 4

5

2 1

5

3 2 4 0

3 2 4

2
0 7

3 3 0 2

1 3 2 2

6 8 5 3

4

4

4

6

3

5

3

5

6

0

6

4

2

1
1 2

4

5

2

1
1

7

2

FIGURE 5.4 Directed graphs corresponding to hypothetical irregular city grids.

Longest Path in a DAG Problem:
Find a longest path between two nodes in an edge-weighted DAG.

Input: An edge-weighted DAG with source and sink nodes.
Output: A longest path from source to sink in the DAG.

STOP and Think: Do you see any similarities between the Longest Path in a
DAG Problem and the Longest Common Subsequence Problem?

Sequence Alignment is the Manhattan Tourist Problem in Disguise

In Figure 5.5, we add two arrays of integers to an alignment of ATGTTATA and
ATCGTCC. The array [0 1 2 2 3 4 5 6 7 8] holds the number of symbols of ATGTTATA
used up to a given column in the alignment. Similarly, the array [0 1 2 3 4 5 5 6 6 7]
holds the number of symbols of ATCGTCC used up to a given column. In Figure 5.5, we
have added a third array, [& & ! & & # & # &], recording whether each column
represents a match/mismatch (&/&), an insertion (!), or a deletion (#).

This third array corresponds to a path from source to sink in an 8⇥ 7 rectangular
grid, shown in Figure 5.6 (left). The i-th node of this path is made up of the i-th element
of [0 1 2 2 3 4 5 6 7 8] and the i-th element of [0 1 2 3 4 5 5 6 6 7]:

(0, 0)&(1, 1)&(2, 2)!(2, 3)&(3, 4)&(4, 5)#(5, 5)&(6, 6)#(7, 6)&(8, 7)

233



C H A P T E R 5

0 1 2 2 3 4 5 6 7 8
A T - G T T A T A
A T C G T - C - C

0 1 2 3 4 5 5 6 6 7
& & ! & & # & # &

FIGURE 5.5 An alignment of ATGTTATA and ATCGTCC. The array in the first row
counts the number of symbols of ATGTTATA used up to a given position. The array in
the fourth row counts the number of symbols of ATCGTCC used up to a given position.
And the array in the last row records whether each column of the alignment represents
a match/mismatch (&/&), insertion (!), or deletion (#).

Note that in addition to horizontal and vertical edges, we have added diagonal edges
connecting (i, j) to (i + 1, j + 1) in Figure 5.6.

A T C G T C C
A

T

G

T

T

A

T

A

A T C G T C C
A

T

G

T

T

A

T

A

FIGURE 5.6 Every alignment corresponds to a path in the alignment graph from source
to sink, and vice-versa. (Left) The path (0, 0) & (1, 1) & (2, 2) ! (2, 3) & (3, 4)
& (4, 5) # (5, 5) & (6, 6) # (7, 6) & (8, 7) is highlighted above and corresponds to
the alignment of ATGTTATA and ATCGTCC in Figure 5.5. (Right) Another path in the
alignment graph.

We call the DAG in Figure 5.6 the alignment graph of strings v and w, denoted
ALIGNMENTGRAPH(v, w), and we call a path from source to sink in this DAG an align-
ment path. Every alignment of v and w can be viewed as a set of instructions to construct
a unique alignment path in ALIGNMENTGRAPH(v, w), where each match/mismatch,
insertion, and deletion corresponds to an edge &/&, !, and #, respectively. Fur-
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thermore, this process is reversible, as we can convert each alignment path into a unique
alignment.

EXERCISE BREAK: Construct the alignment of ATGTTATA and ATCGTCC cor-
responding to the alignment path in Figure 5.6 (right).

STOP and Think: Can you use the alignment graph to find a longest common
subsequence of two strings?

Recall that finding a longest common subsequence of two strings is equivalent to finding
an alignment of these strings maximizing the number of matches. In Figure 5.7, we high-
light all diagonal edges of ALIGNMENTGRAPH(ATGTTATA,ATCGTCC) corresponding
to matches. If we assign a weight of 1 to all these edges and 0 to all other edges, then
the Longest Common Subsequence Problem is equivalent to finding a longest path in
this weighted DAG!

A T C G T C C
A

T

G

T

T

A

T

A

FIGURE 5.7 ALIGNMENTGRAPH(ATGTTATA,ATCGTCC) with all edges of weight 1
colored red (all other edges have weight 0). These edges correspond to potential
matched symbols in an alignment of the two strings.

Thus, we need to design an algorithm for the Longest Path in a DAG Problem, but
to do so, we need to know more about dynamic programming, a powerful algorithmic
paradigm that is used for solving thousands of problems from various scientific fields.
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If you are already familiar with dynamic programming, then you may want to skip the
next section.

An Introduction to Dynamic Programming: The Change Problem

Changing money greedily

Imagine that you bought this textbook in a bookstore for $69.24, which you paid for with
$70 in cash. You are due 76 cents in change, and the cashier now must make a decision
whether to give you a fistful of 76 1-cent coins or just four coins (25 + 25 + 25 + 1 = 76).
Making change in this example is easy, but it casts light on a more general problem:
how can a cashier make change using the fewest number of coins?

Different currencies have different possible coin values, or denominations. In the
United States, the coin denominations are (100, 50, 25, 10, 5, 1); in the Roman Republic,
they were (120, 40, 30, 24, 20, 10, 5, 4, 1). The heuristic used by cashiers all over the world
to make change, which we call GREEDYCHANGE, iteratively selects the largest coin
denomination possible.

GREEDYCHANGE(money)
Change empty collection of coins
while money > 0

coin largest denomination that is less than or equal to money
add a coin with denomination coin to the collection of coins Change
money money� coin

return Change

STOP and Think: Does GREEDYCHANGE always return the minimum possible
number of coins?

Say we want to change 48 units of currency (denarii) in ancient Rome. GREEDYCHANGE

returns five coins (48 = 40+ 5+ 1+ 1+ 1), and yet we can make change using only two
coins (48 = 24 + 24). Thus, GREEDYCHANGE is suboptimal for some denominations!

STOP and Think: During the reign of Augustus, Roman coin denominations
were changed to (1600, 800, 400, 200, 100, 50, 25, 2, 1). Why did these denomina-
tions make Roman cashiers’ lives easier? More generally, find a condition on coin
denominations that dictates when GREEDYCHANGE will make change with the
fewest number of coins.
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Since GREEDYCHANGE is incorrect, we need to come up with a different approach. We
can represent coins from d arbitrary denominations by an array of integers

COINS = (coin1, . . . , coind) ,

where the values coini are given in decreasing order. We say that an array of d posi-
tive integers (change1, . . . , changed) with the number of coins change1 + · · ·+ changed
changes an integer money (for the denominations COINS) if

coin1 · change1 + · · ·+ coind · changed = money .

For example, for the Roman denominations COINS = (120, 40, 30, 24, 20, 10, 5, 4, 1), both
(0, 1, 0, 0, 0, 0, 0, 1, 0, 3) and (0, 0, 0, 2, 0, 0, 0, 0, 0) change money = 48.

We will consider the problem of finding the minimum number of coins needed to
make change, instead of actually producing these coins. Let MINNUMCOINS(money)
denote the minimum number of coins needed to change money for a given collection of
denominations (e.g., for the Roman denominations, MINNUMCOINS(48) = 2).

Change Problem:
Find the minimum number of coins needed to make change.

Input: An integer money and an array COINS of d positive integers.
Output: The minimum number of coins with denominations COINS that
changes money.

Changing money recursively

Since the greedy solution used by Roman cashiers to solve the Change Problem is
incorrect, we will consider a different approach. Suppose you need to change 76 denarii,
and you only have coins of the three smallest denominations: COINS = (5, 4, 1). A
minimal collection of coins totaling 76 denarii must be one of the following:

• a minimal collection of coins totaling 75 denarii, plus a 1-denarius coin;

• a minimal collection of coins totaling 72 denarii, plus a 4-denarius coin;

• a minimal collection of coins totaling 71 denarii, plus a 5-denarius coin.
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For the general denominations COINS = (coin1, . . . , coind), MINNUMCOINS(money)
is equal to the minimum of d numbers:

MINNUMCOINS(money) = min

8
>><

>>:

MINNUMCOINS(money� coin1) + 1
...

MINNUMCOINS(money� coind) + 1

We have just produced a recurrence relation, or an equation for MINNUMCOINS(money)
in terms of MINNUMCOINS(m) for smaller values m. The above recurrence relation
motivates the following recursive algorithm, which solves the Change Problem by
computing MINNUMCOINS(m) for smaller and smaller values of m. In this algorithm,
|COINS| refers to the number of denominations in COINS. See DETOUR: The TowersPAGE 60
of Hanoi if you did not encounter recursive algorithms in Chapter 1.

RECURSIVECHANGE(money, COINS)
if money = 0

return 0
minNumCoins 1
for i 1 to |COINS|

if money � coini

numCoins RECURSIVECHANGE(money� coini,COINS)

if numCoins + 1 < minNumCoins
minNumCoins numCoins + 1

return minNumCoins

STOP and Think: Implement RECURSIVECHANGE and run it on money = 76
with COINS = (5, 4, 1). What happens?

RECURSIVECHANGE may appear efficient, but it is completely impractical because it
recalculates the optimal coin combination for a given value of money over and over
again. For example, when money = 76 and COINS = (5, 4, 1), MINNUMCOINS(70) gets
computed six times, five of which are shown in Figure 5.8. This may not seem like a
problem, but MINNUMCOINS(30) will be computed billions of times!
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61 62 65 62 63 66 65 66 69 62 63 66 63 64 67 66 67 70 65 66 69 66 67 70 69 70 73 

66 67 70 67 68 71 70 71 74 

71 75 72 

76 

FIGURE 5.8 A tree illustrating the computation of MINNUMCOINS(76) for the de-
nominations COINS = (5, 4, 1). The edges of this tree represent recursive calls of
RECURSIVECHANGE for different input values, with five of the six computations of
MINNUMCOINS(70) highlighted in red. When MINNUMCOINS(70) is computed for
the sixth time (corresponding to the path 76 ! 75 ! 74 ! 73 ! 72 ! 71 ! 70),
RECURSIVECHANGE has already been called hundreds of times.

Changing money using dynamic programming

To avoid the many recursive calls needed to compute MINNUMCOINS(money), we
will use a dynamic programming strategy. Wouldn’t it be nice to know all the values
of MINNUMCOINS(money� coini) by the time we compute MINNUMCOINS(money)?
Instead of making time-consuming calls to RECURSIVECHANGE(money� coini, COINS),
we could simply look up the values of MINNUMCOINS(money� coini) in an array and
thus compute MINNUMCOINS(money) using just |COINS| comparisons.

The key to dynamic programming is to take a step that may seem counterintu-
itive. Instead of computing MINNUMCOINS(m) for every value of m from 76 down-
ward toward m = 1 via recursive calls, we will invert our thinking and compute
MINNUMCOINS(m) from m = 1 upward toward 76, storing all these values in an ar-
ray so that we only need to compute MINNUMCOINS(m) once for each value of m.
MINNUMCOINS(m) is still computed via the same recurrence relation:

MINNUMCOINS(m) = min

8
><

>:

MINNUMCOINS(m� 5) + 1
MINNUMCOINS(m� 4) + 1
MINNUMCOINS(m� 1) + 1

For example, assuming that we have already computed MINNUMCOINS(m) for
m < 6,
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MINNUMCOINS(6) = min

8
><

>:

MINNUMCOINS(1) + 1 = 2
MINNUMCOINS(2) + 1 = 3
MINNUMCOINS(5) + 1 = 2

= 2 .

Following the same reasoning,

MINNUMCOINS(7) = min

8
><

>:

MINNUMCOINS(2) + 1 = 3
MINNUMCOINS(3) + 1 = 4
MINNUMCOINS(6) + 1 = 3

= 3 .

Continuing these calculations results in Figure 5.9.

m 0 1 2 3 4 5 6 7 8 9 10 11 12
MINNUMCOINS(m) 0 1 2 3 1 1 2 3 2 2 2 3 3

FIGURE 5.9 MINNUMCOINS(m) for values of m between 1 and 12.

EXERCISE BREAK: Use dynamic programming to fill in the next ten values of
MINNUMCOINS(m) in Figure 5.9.

Notice that MINNUMCOINS(2) is used in the computation of both MINNUMCOINS(6)
and MINNUMCOINS(7), but instead of draining computational resources by having to
compute this value both times, we simply consult the pre-computed value in the array.
The following dynamic programming algorithm calculates MINNUMCOINS(money)
with runtime O(money · |COINS|).

5A

DPCHANGE(money, COINS)
MINNUMCOINS(0) 0
for m 1 to money

MINNUMCOINS(m) 1
for i 1 to |COINS|

if m � coini

if MINNUMCOINS(m� coini) + 1 < MINNUMCOINS(m)

MINNUMCOINS(m) MINNUMCOINS(m� coini) + 1

return MINNUMCOINS(money)
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STOP and Think: If money = 109, DPCHANGE requires a huge array of size
109. Modify the DPCHANGE algorithm so that the array size required does not
exceed the value of the largest coin denomination.

STOP and Think: Recall that our original goal was to make change, not just com-
pute MINNUMCOINS(money). Modify DPCHANGE so that it not only computes
the minimum number of coins but also returns these coins.

The Manhattan Tourist Problem Revisited

You should now be ready to implement an algorithm solving the Manhattan Tourist
Problem. The following pseudocode computes the length of the longest path to node
(i, j) in a rectangular grid and is based on the observation that the only way to reach
node (i, j) in the Manhattan Tourist Problem is either by moving south (#) from (i� 1, j)
or east (!) from (i, j� 1).

SOUTHOREAST(i, j)
if i = 0 and j = 0

return 0
x �1, y �1
if i > 0

x SOUTHOREAST(i� 1, j)+ weight of vertical edge into (i, j)

if j > 0
y SOUTHOREAST(i, j� 1)+ weight of horizontal edge into (i, j)

return max{x, y}

STOP and Think: How many times is SOUTHOREAST(3, 2) called in the com-
putation of SOUTHOREAST(9, 7)?

Similarly to RECURSIVECHANGE, SOUTHOREAST suffers from a huge number of
recursive calls, and we need to reframe this algorithm using dynamic programming.
Remember how DPCHANGE worked from small instances upward? To find the length
of a longest path from source (0, 0) to sink (n, m), we will first find the lengths of longest
paths from the source to all nodes (i, j) in the grid, expanding slowly outward from the
source.
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At first glance, you may think that we have created additional work for ourselves by
solving n⇥m different problems instead of a single problem. Yet SOUTHOREAST also
solves all these smaller problems, just as RECURSIVECHANGE and DPCHANGE both
computed MINNUMCOINS(m) for all values of m < money. The trick behind dynamic
programming is to solve each of the smaller problems once rather than billions of times.

We will henceforth denote the length of a longest path from (0, 0) to (i, j) as si, j.
Computing s0, j (for 0  j  m) is easy, since we can only reach (0, j) by moving right
(!) and do not have any flexibility in our choice of path. Thus, s0, j is the sum of the
weights of the first j horizontal edges leading out from the source. Similarly, si, 0 is the
sum of the weights of the first i vertical edges from the source (Figure 5.10).
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3 3 0 2

1 3 2 2

6 8 5 3

0 3 5 9 9
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5
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14 

FIGURE 5.10 Computing si, 0 and s0, j is easy because there is only one path from the
source to (i, 0) and only one path from the source to (0, j).

For i > 0 and j > 0, the only way to reach node (i, j) is by moving down from node
(i � 1, j) or by moving right from node (i, j � 1). Thus, si, j can be computed as the
maximum of two values:

si, j = max

(
si�1, j + weight of vertical edge from (i� 1, j) to (i, j)
si, j�1 + weight of horizontal edge from (i, j� 1) to (i, j)

Now that we have computed s0, 1 and s1, 0, we can compute s1, 1. You can arrive at
(1, 1) by traveling down from (0, 1) or right from (1, 0). Therefore, s1, 1 is the maximum
of two values:
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s1, 1 = max

(
s0, 1 + weight of vertical edge from (0, 1) to (1, 1) = 3 + 0 = 3
s1, 0 + weight of horizontal edge from (1, 0) to (1, 1) = 1 + 3 = 4

Since our goal is to find the longest path from (0, 0) to (1, 1), we conclude that s1, 1 = 4.
Because we chose the horizontal edge from (1, 0) to (1, 1), the longest path through
(1, 1) must use this edge, which we highlight in Figure 5.11 (top left). Similar logic
allows us to compute the rest of the values in column 1; for each si, 1, we highlight the
edge that we chose leading into (i, 1), as shown in Figure 5.11 (top right).

Continuing column-by-column (Figure 5.11 (bottom left)), we can compute every
score si, j in a single sweep of the graph, eventually calculating s4, 4 = 34.

For each node (i, j), we will highlight the edge leading into (i, j) that we used to
compute si, j. However, note that we have a tie when we compute s3, 3 :

s3, 3 = max

(
s2, 3 + weight of vertical edge from (2, 3) to (3, 3) = 20 + 2 = 22
s3, 2 + weight of horizontal edge from (3, 2) to (3, 3) = 22 + 0 = 22

To reach (3, 3), we could have used either the horizontal or vertical incoming edge, and
so we highlight both of these edges in the completed graph in Figure 5.11 (bottom left).

STOP and Think: Thus far, we have only discussed how to find the length of a
longest path. How could you use the highlighted edges in Figure 5.11 (bottom
left) to reconstruct a longest path?

We now have the outline of a dynamic programming algorithm for finding the length
of a longest path in the Manhattan Tourist Problem, called MANHATTANTOURIST. In
the pseudocode below, downi, j and righti, j are the respective weights of the vertical and
horizontal edges entering node (i, j). We denote the matrices holding (downi, j) and
(righti, j) as Down and Right, respectively.

EXERCISE BREAK: Modify MANHATTANTOURIST in order to find the length
of the longest path from source to sink in the graph shown in Figure 5.11 (bottom
right).
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FIGURE 5.11 (Top left) Computing s1,1 uses the horizontal edge from (1, 0), which is
highlighted. (Top right) Computing all values si, 1 in column 1. (Bottom left) The graph
displaying all scores si, j. (Bottom right) A graph with diagonal edges constructed for an
imaginary city. Node (1, 1) has three predecessors ((0, 0), (0, 1), and (1, 0)) that are
used in the computation of s1,1.
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MANHATTANTOURIST(n, m, Down, Right)
s0,0  0
for i 1 to n

si, 0  si�1, 0 + downi, 0

for j 1 to m
s0, j  s0, j�1 + right0, j

for i 1 to n
for j 1 to m

si, j  max{si�1, j + downi, j, si, j�1 + righti, j}
return sn,m

5B

From Manhattan to an Arbitrary Directed Acyclic Graph

Sequence alignment as building a Manhattan-like graph

After seeing how dynamic programming solved the Manhattan Tourist Problem, you
should be prepared to adapt MANHATTANTOURIST for alignment graphs with diago-
nal edges. Recall Figure 5.7, in which we modeled the Longest Common Subsequence
Problem as finding the longest path in an alignment graph “city” whose “attractions”’
(matches) all lie on diagonal edges with weight 1.

You can probably work out the recurrence relation for the alignment graph on your
own, but imagine for a second that you have not already learned that an LCS can be
represented by a longest path in the alignment graph. As DETOUR: Finding a Longest PAGE 283
Common Subsequence without Building a City explains, we don’t need to build a
Manhattan-like city to compute the length of an LCS. However, the arguments required
to do so are tedious. More importantly, various alignment applications are much more
complex than the Longest Common Subsequence Problem and require building a DAG
with appropriately chosen edge weights in order to model the specifics of a biological
problem. Rather than treating each subsequent alignment application as a frightening
new challenge, we would like to equip you with a generic dynamic programming
algorithm that will find a longest path in any DAG. Moreover, many bioinformatics
problems have nothing to do with alignment, yet they can also be solved as applications
of the Longest Path in a DAG Problem.
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Dynamic programming in an arbitrary DAG

Given a node b in a DAG, let sb denote the length of a longest path from the source to b.
We call node a a predecessor of node b if there is an edge connecting a to b in the DAG;
note that the indegree of a node is equal to the number of its predecessors. The score sb
of node b with indegree k is computed as a maximum of k terms:

sb = max
all predecessors a of node b

{sa + weight of edge from a to b}.

For example, in the graph shown in Figure 5.11 (bottom right), node (1, 1) has three
predecessors. You can arrive at (1, 1) by traveling right from (1, 0), down from (0, 1), or
diagonally from (0, 0), Assuming that we have already computed s0, 0, s0, 1, and s1, 0, we
can therefore compute s1, 1 as the maximum of three values:

s1, 1 = max

8
><

>:

s0, 1 + weight of edge # connecting (0, 1) to (1, 1) = 3 + 0 = 3
s1, 0 + weight of edge ! connecting (1, 0) to (1, 1) = 1 + 3 = 4
s0, 0 + weight of edge & connecting (0, 0) to (1, 1) = 0 + 5 = 5

To compute scores for any node (i, j) of this graph, we use the following recurrence:

si, j = max

8
><

>:

si�1, j + weight of edge # between (i� 1, j) and (i, j)
si, j�1 + weight of edge ! between (i, j� 1) and (i, j)
si�1, j�1 + weight of edge & between (i� 1, j� 1) and (i, j)

An analogous argument can be applied to the alignment graph to compute the
length of an LCS between sequences v and w. Since in this case all edges have weight 0
except for diagonal edges of weight 1 that represent matches (vi = wj), we obtain the
following recurrence for computing the length of an LCS:

si, j = max

8
><

>:

si�1, j + 0
si, j�1 + 0
si�1, j�1 + 1, if vi = wj

STOP and Think: The above recurrence does not incorporate mismatch edges.
Why is this not a problem?
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A similar approach can be developed to find the longest path in any DAG, as suggested
by the next exercise.

EXERCISE BREAK: What is the length of a longest path between the blue and
red nodes in the DAG shown in Figure 5.12?

2 
4 1 

1 
3 

2 
1 
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3 

4 8 

3 2 

2 

3 

7 

FIGURE 5.12 A weighted DAG without the obvious order inherent in the graphs previ-
ously encountered in this chapter.

Topological orderings

Do not worry if you struggled to solve the last exercise. The hitch to using dynamic
programming in order to find the length of a longest path in a DAG is that we must
decide on the order in which to visit nodes when computing the values sb according to
the recurrence

sb = max
all predecessors a of node b

{sa + weight of edge from a to b}.

This ordering of nodes is important, since by the time we reach node b, the values sa
for all its predecessors must have already been computed. We have managed to hide
this issue for rectangular grids because the order in which we have computed the si, j
ensured that we would never consider a node before visiting all of its predecessors.

To illustrate the importance of visiting nodes in the correct order, consider the DAG
in Figure 5.13, which corresponds to a “Dressing Challenge Problem”. How would you
order the nodes of this graph so that you don’t put on your boots before your tights?
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FIGURE 5.13 The DAG associated with the Dressing Challenge Problem. If a directed
edge connects two items of clothing, then the first item must be put on before the
second item.

To solve the Dressing Challenge Problem, we need to arrange the nodes in the DAG
in Figure 5.13 along a line so that every directed edge connects a node to a node on its
right (Figure 5.14). To get dressed without any mishaps, you can simply visit nodes
from left to right.

To find a longest path in an arbitrary DAG, we first need to order the nodes of the
DAG so that every node falls after all its predecessors. Formally, an ordering of nodes
(a1, . . . , ak) in a DAG is called a topological ordering if every edge (ai, aj) of the DAG
connects a node with a smaller index to a node with a larger index, i.e., i < j.

EXERCISE BREAK: Construct a topological ordering of the DAG in Figure 5.12.

EXERCISE BREAK: How many topological orderings does the Dressing Chal-
lenge DAG have?

The reason why MANHATTANTOURIST is able to find a longest path in a rectangular
grid is that its pseudocode implicitly orders nodes according to the “column-by-column”
topological ordering shown in Figure 5.15 (left). The “row-by-row” ordering (Figure 5.15
(right)) gives another topological ordering of a rectangular grid.
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FIGURE 5.14 Two different topological orderings of the Dressing Challenge DAG from
Figure 5.13.
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FIGURE 5.15 The column-by-column (left) and row-by-row (right) topological orderings
of a rectangular grid.

STOP and Think: Rewrite the MANHATTANTOURIST pseudocode based on the
topological ordering shown in Figure 5.16.
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FIGURE 5.16 Another topological ordering of the rectangular grid from Figure 5.15.

It can be proven that any DAG has a topological ordering, and that this topological
ordering can be constructed in time proportional to the number of edges in the graph
(see DETOUR: Constructing a Topological Ordering). Once we have a topologicalPAGE 284
ordering, we can compute the length of the longest path from source to sink by visit-
ing the nodes of the DAG in the order dictated by the topological ordering, which is
achieved by the following algorithm. For simplicity, we assume that the source node is
the only node with indegree 0 in Graph.

LONGESTPATH(Graph, source, sink)
for each node b in Graph

sb  �1
ssource  0
topologically order Graph
for each node b in Graph (following the topological order)

sb  maxall predecessors a of node b{sa + weight of edge from a to b}
return ssink

Since every edge participates in only a single recurrence, the runtime of LONGESTPATH

is proportional to the number of edges in the DAG Graph.
We can now efficiently compute the length of a longest path in an arbitrary DAG, but

we do not yet know how to convert LONGESTPATH into an algorithm that will construct
this longest path. In the next section, we will use the Longest Common Subsequence
Problem to explain how to construct a longest path in a DAG.
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Backtracking in the Alignment Graph

In Figure 5.11 (bottom left), we highlighted each edge selected by MANHATTANTOURIST.
To form a longest path, we simply need to find a path from source to sink formed by
highlighted edges (more than one such path may exist). However, if we were to walk
from source to sink along the highlighted edges, we might reach a dead end, such as
the node (1, 2). In contrast, every path from the sink will bring us back to the source if
we backtrack in the direction opposite to each highlighted edge (Figure 5.17).
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FIGURE 5.17 Following edges from the sink backwards to the source produces the red
path in the DAG above, which highlights a longest path from the source to sink.

We can use this backtracking idea to construct an LCS of strings v and w. We
know that if we assign a weight of 1 to the edges in ALIGNMENTGRAPH(v, w) corre-
sponding to matches and assign a weight of 0 to all other edges, then s|v|, |w| gives
the length of an LCS. The following algorithm maintains a record of which edge in
ALIGNMENTGRAPH(v, w) was used to compute each value si, j by utilizing backtrack-
ing pointers, which take one of the three values # , !, or &. Backtracking pointers
are stored in a matrix Backtrack.

STOP and Think: How does changing the order of the three “if” statements in
the LCSBACKTRACK pseudocode affect the computation of Backtrack?
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LCSBACKTRACK(v, w)
for i 0 to |v|

si, 0  0

for j 0 to |w|
s0, j  0

for i 1 to |v|
for j 1 to |w|

si , j  max

8
><

>:

si�1, j

si, j�1
si�1, j�1 + 1, if vi = wj

if si, j = si�1, j

Backtracki, j  ”#”
else if si, j = si, j�1

Backtracki, j  ”!”

else if si, j = si�1, j�1 + 1 and vi = wj

Backtracki, j  ”&”

return Backtrack

We now need to find a path from the source to the sink formed by the highlighted edges.
The algorithm below solves the Longest Common Subsequence Problem by using the
information in Backtrack. OUTPUTLCS(Backtrack, v, i, j) outputs an LCS between the
i-prefix of v and the j-prefix of w. The initial invocation that outputs an LCS of v and w
is OUTPUTLCS(Backtrack, v, |v|, |w|).

5C

OUTPUTLCS(Backtrack, v, i, j)
if i = 0 or j = 0

return
if Backtracki, j = #

OUTPUTLCS(Backtrack, v, i� 1, j)
else if Backtracki, j = !

OUTPUTLCS(Backtrack, v, i, j� 1)
else

OUTPUTLCS(Backtrack, v, i� 1, j� 1)
output vi
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STOP and Think: OUTPUTLCS is a recursive algorithm, but it is efficient. What
makes it different from the inefficient recursive algorithms for making change
and finding a longest path in a DAG?

The backtracking method can be generalized to construct a longest path in any DAG.
Whenever we compute sb as

sb = max
all predecessors a of node b

{sa + weight of edge from a to b},

we simply need to store a predecessor of b that was used in the computation of sb so that
we can backtrack later on. You are now ready to use backtracking to find the longest
path in an arbitrary DAG.

5D

EXERCISE BREAK: Currently, OUTPUTLCS finds a single LCS of two strings.
Modify OUTPUTLCS (and LCSBACKTRACK) to find every LCS of two strings.

Scoring Alignments

What is wrong with the LCS scoring model?

Recall Marahiel’s alignment of the A-domains coding for Asp and Orn, which had
19 + 10 matches:

YAFDLGYTCMFPVLLGGGELHIVQKETYTAPDEIAHYIKEHGITYIKLTPSLFHTIVNTASFAFDANFESLRLIVLGGEKIIPIDVIAFRKMYGHTE-FINHYGPTEATIGA
-AFDVSAGDFARALLTGGQLIVCPNEVKMDPASLYAIIKKYDITIFEATPALVIPLMEYI-YEQKLDISQLQILIVGSDSCSMEDFKTLVSRFGSTIRIVNSYGVTEACIDS

It is not difficult to construct an alignment having even more matches at the expense
of introducing more indels. Yet the more indels we add, the less biologically relevant
the alignment becomes, as it diverges further and further from the biologically correct
alignment found by Marahiel. Below is the alignment with the maximum number of
matches, representing an LCS of length 19 + 8 + 19 = 46. This alignment is so long that
we cannot fit it on a single line.

YAFDL--G-YTCMFP--VLL-GGGELHIV---Q-K-E--T-YTAPDEIAHYIK--EHGITYI---KLTPSL-FHT
-AFDVSAGD----FARA-LLTGG-QL-IVCPNEVKMDPASLY-A---I---IKKYD--IT-IFEA--TPALV---

IVNTASFAFDANFE-----S-LR-LIVLGG-----EKIIPIDVIAFRK-M---YGHTEFI---NHYGPTEATIGA
IPLMEYIY-----EQKLDISQLQILIV-GSDSCSME-----D---F-KTLVSRFGST--IRIVNSYGVTEACIDS
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STOP and Think: If Marahiel had constructed this alignment, would he have
been able to infer the eight amino acid-long signatures of the non-ribosomal code?

Below, we highlight the purple amino acids representing the non-ribosomal signatures.
Although these signatures are grouped in eight conserved columns in Marahiel’s align-
ment from the beginning of the chapter, only five of these columns have “survived” in
the LCS alignment above, making it impossible to infer the non-ribosomal signatures:

YAFDL--G-YTCMFP--VLL-GGGELHIV---Q-K-E--T-YTAPDEIAHYIK--EHGITYI---KLTPSL-FHT
-AFDVSAGD----FARA-LLTGG-QL-IVCPNEVKMDPASLY-A---I---IKKYD--IT-IFEA--TPALV---

IVNTASFAFDANFE-----S-LR-LIVLGG-----EKIIPIDVIAFRK-M---YGHTEFI---NHYGPTEATIGA
IPLMEYIY-----EQKLDISQLQILIV-GSDSCSME-----D---F-KTLVSRFGST--IRIVNSYGVTEACIDS

The frivolous matches hiding the real evolutionary scenario have appeared because
nothing stopped us from introducing an excessive number of indels when building
an LCS. Recalling our original alignment game in which we rewarded matched sym-
bols, we need some way of penalizing indels and mismatches. First, let’s handle indels.
Say that in addition to assigning matches a premium of +1, we assess each indel a
penalty of -4. The top-scoring alignment of the A-domains gets closer to the biologically
correct alignment, with six of the columns corresponding to correctly aligned signatures.

YAFDLGYTCMFP-VLL-GGGELHIV-QKETYTAPDEI-AHYIKEHGITYI-KLTPSLFHTIVNTASFAFDANFE
-AFDVS-AGDFARALLTGG-QL-IVCPNEVKMDPASLYA-IIKKYDIT-IFEATPAL--VIPLME-YIYEQKLD

-S-LR-LIVLGGEKIIPIDVIAFRKM---YGHTE-FINHYGPTEATIGA
ISQLQILIV-GSDSC-SME--DFKTLVSRFGSTIRIVNSYGVTEACIDS

Scoring matrices

To generalize the alignment scoring model, we still award +1 for matches, but we also
penalize mismatches by some positive constant µ (the mismatch penalty) and indels
by some positive constant s (the indel penalty). As a result, the score of an alignment
is equal to

# matches� µ · # mismatches� s · # indels .

For example, with the parameters µ = 1 and s = 2, the alignment below will be
assigned a score of -4:

A T - G T T A T A
A T C G T - C - C
+1 +1 -2 +1 +1 -2 -1 -2 -1
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Biologists have further refined this cost function to allow for the fact that some mu-
tations may be more likely than others, which calls for mismatches and indel penalties
that differ depending on the specific symbols involved. We will extend the k-letter
alphabet to include the space symbol and then construct a (k + 1)⇥ (k + 1) scoring
matrix Score holding the score of aligning every pair of symbols. The scoring matrix
for comparing DNA sequences (k = 4) when all mismatches are penalized by µ and all
indels are penalized by s is shown below.

A C G T -
A +1 -µ -µ -µ -s
C -µ +1 -µ -µ -s
G -µ -µ +1 -µ -s
T -µ -µ -µ +1 -s
- -s -s -s -s

Although scoring matrices for DNA sequence comparison are usually defined only
by the parameters µ and s, scoring matrices for protein sequence comparison weight
different mutations differently and become quite involved (see DETOUR: PAM Scor- PAGE 285
ing Matrices).

From Global to Local Alignment

Global alignment

You should now be ready to modify the alignment graph to solve a generalized form of
the alignment problem that takes a scoring matrix as input.

Global Alignment Problem:
Find a highest-scoring alignment of two strings as defined by a scoring matrix.

Input: Two strings and a scoring matrix Score.
Output: An alignment of the strings whose alignment score (as defined by
Score) is maximized among all possible alignments of the strings.

5E

To solve the Global Alignment Problem, we still must find a longest path in the align-
ment graph after updating the edge weights to reflect the values in the scoring matrix
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(Figure 5.18). Recalling that deletions correspond to vertical edges (#), insertions cor-
respond to horizontal edges (!), and matches/mismatches correspond to diagonal
edges (&/&), we obtain the following recurrence for si, j, the length of a longest path
from (0, 0) to (i, j):

si, j = max

8
><

>:

si�1, j + Score(vi,-)
si, j�1 + Score(-, wj)

si�1, j�1 + Score(vi, wj).

When the match reward is +1, the mismatch penalty is µ, and the indel penalty is s, the
alignment recurrence can be written as follows:

si, j = max

8
>>><

>>>:

si�1, j � s

si, j�1 � s

si�1, j�1 + 1 , if vi = wj
si�1, j�1 � µ , if vi 6= wj.
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FIGURE 5.18 ALIGNMENTGRAPH(TGTTA,TCGT), with each edge colored according
to whether it represents a match, mismatch, insertion, or deletion.
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Limitations of global alignment

Analysis of homeobox genes offers an example of a problem for which global alignment
may fail to reveal biologically relevant similarities. These genes regulate embryonic
development and are present in a large variety of species, from flies to humans. Home-
obox genes are long, and they differ greatly between species, but an approximately 60
amino acid-long region in each gene, called the homeodomain, is highly conserved.
For instance, consider the mouse and human homeodomains below.

Mouse
...ARRSRTHFTKFQTDILIEAFEKNRFPGIVTREKLAQQTGIPESRIHIWFQNRRARHPDPG...ARHPDPG...
...ARQKQTFITWTQKNRLVQAFERNPFPDTATRKKLAEQTGLQESRIQMWFQKQRSLYLKKS...

Human

The immediate question is how to find this conserved segment within the much
longer genes and ignore the flanking areas, which exhibit little similarity. Global align-
ment seeks similarities between two strings across their entire length; however, when
searching for homeodomains, we are looking for smaller, local regions of similarity
and do not need to align the entire strings. For example, the global alignment below
has 22 matches, 18 indels, and 2 mismatches, resulting in the score 22� 18� 2 = 2 (if
s = µ = 1):

GCC-C-AGTC-TATGT-CAGGGGGCACG--A-GCATGCACA-
GCCGCC-GTCGT-T-TTCAG----CA-GTTATGT-T-CAGAT

However, these sequences can be aligned differently (with 17 matches and 32 indels)
based on a highly conserved interval represented by the substrings CAGTCTATGTCAG
and CAGTTATGTTCAG:

---G----C-----C--CAGTCTATG-TCAGGGGGCACGAGCATGCACA
GCCGCCGTCGTTTTCAGCAGT-TATGTTCAG-----A------T-----

This alignment has fewer matches and a lower score of 17� 32 = �15, even though the
conserved region of the alignment contributes a score of 12� 2 = 10, which is hardly
an accident.

Figure 5.19 shows the two alignment paths corresponding to these two different
alignments. The upper path, corresponding to the second alignment above, loses
out because it contains many heavily penalized indels on either side of the diagonal
corresponding to the conserved interval. As a result, global alignment outputs the
biologically irrelevant lower path.
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FIGURE 5.19 Global and local alignments of two DNA strings that share a highly
conserved interval. The relevant alignment that captures this interval (upper path) loses
to an irrelevant alignment (lower path), since the former incurs heavy indel penalties.

When biologically significant similarities are present in some parts of sequences
v and w and absent from others, biologists attempt to ignore global alignment and
instead align substrings of v and w, which yields a local alignment of the two strings.
The problem of finding substrings that maximize the global alignment score over all
substrings of v and w is called the Local Alignment Problem.

258



H O W D O W E C O M PA R E D N A S E Q U E N C E S ?

Local Alignment Problem:
Find the highest-scoring local alignment between two strings.

Input: Strings v and w as well as a scoring matrix Score.
Output: Substrings of v and w whose global alignment score (as defined by
Score) is maximized among all substrings of v and w.

The straightforward way to solve the Local Alignment Problem is to find the longest
path connecting every pair of nodes in the alignment graph (rather than just those
connecting the source and sink, as in the Global Alignment Problem), and then to select
the path having maximum weight over all these longest paths.

STOP and Think: What is the runtime of this approach?

Free taxi rides in the alignment graph

For a faster local alignment approach, imagine a “free taxi ride” from the source (0, 0)
to the node representing the start node of the conserved (red) interval in Figure 5.19.
Imagine also a free taxi ride from the end node of the conserved interval to the sink. If
such rides were available (Figure 5.20), then you could reach the starting node of the
conserved interval for free, instead of incurring heavy penalties as in global alignment.
Then, you could travel along the conserved interval to its end node, accumulating
positive match scores. Finally, you could take another free ride from the end node of the
conserved interval to the sink. The resulting score of this ride is equal to the alignment
score of only the conserved intervals, as desired.

Connecting the source (0, 0) to every other node by adding a zero-weight edge and
connecting every node to the sink (n, m) by a zero-weight edge will result in a DAG
perfectly suited for solving the Local Alignment Problem (Figure 5.21). Because of free
taxi rides, we no longer need to construct a longest path between every pair of nodes in
the graph — the longest path from source to sink yields an optimal local alignment!

The total number of edges in the graph in Figure 5.21 is O(|v| · |w|), which is still
small. Since the runtime of finding a longest path in a DAG is defined by the number
of edges in the graph, the resulting local alignment algorithm will be fast. As for
computing the values si, j, adding zero-weight edges from (0, 0) to every node has made
the source node (0, 0) a predecessor of every node (i, j). Therefore, there are now four
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edges entering (i, j), which adds only one new term to the longest path recurrence
relation:

si, j = max

8
>>><

>>>:

0
si�1, j + Score(vi,-)
si, j�1 + Score(-, wj)

si�1, j�1 + Score(vi, wj)
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FIGURE 5.20 Modifying Figure 5.19 by adding “free taxi ride” edges (having weight 0)
connecting the source to the start node of the conserved interval and connecting the
end node of the conserved interval to the sink. These new edges allow us to score only
the local alignment containing the conserved interval.
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Also, because node (n, m) now has every other node as a predecessor, sn, m will be equal
to the largest value of si, j over the entire alignment graph.

FIGURE 5.21 The local alignment algorithm introduces zero-weight edges (shown by
blue dashed lines) connecting the source (0, 0) to every other node in the alignment
graph, as well as zero-weight edges (shown by red dashed lines) connecting every node
to the sink node.

You might still be wondering why we are allowed to free taxi rides through the
alignment graph. The point is that you are in charge of designing whatever Manhattan-
like DAG you like, as long as it adequately models the specific alignment problem at
hand. Transformations like free taxi rides will become a common theme in this chapter.
Various alignment problems can be solved by constructing an appropriate DAG with
as few edges as possible (to minimize runtime), assigning edge weights to model the
requirements of the problem, and then finding a longest path in this DAG.

The Changing Faces of Sequence Alignment

In this section, we will describe three sequence comparison problems and let you apply
what you have already learned to solve them. Hint: the idea is to frame each problem
as an instance of the Longest Path in a DAG Problem.

Edit distance

In 1966, Vladimir Levenshtein introduced the notion of the edit distance between two
strings as the minimum number of edit operations needed to transform one string
into another. Here, an edit operation is the insertion, deletion, or substitution of a
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single symbol. For example, TGCATAT can be transformed into ATCCGAT with five edit
operations, implying that the edit distance between these strings is at most 5.

TGCATAT
# delete last nucleotide

TGCATA
# delete last nucleotide

TGCAT
# insert A at the front
ATGCAT

# substitute G for C in the 3rd position
ATCCAT

# insert G after the 4th position
ATCCGAT

STOP and Think: Can you transform TGCATAT into ATCCGAT using a smaller
number of operations?

In fact, the edit distance between TGCATAT and ATCCGAT is 4:

TGCATAT
# insert A at the front
ATGCATAT

# delete the 6th nucleotide
ATGCAAT

# substitute A for G in the 5th position
ATGCGAT

# substitute G for C in the 3rd position
ATCCGAT

Levenshtein introduced edit distance but did not describe an algorithm for comput-
ing it, which we leave to you.

Edit Distance Problem:
Find the edit distance between two strings.

Input: Two strings.
Output: The edit distance between these strings.

5G
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Fitting alignment

Say that we wish to compare the approximately 20,000 amino acid-long NRP synthetase
from Bacillus brevis with the approximately 600 amino acid-long A-domain from Strepto-
myces roseosporus, the bacterium that produces the powerful antibiotic Daptomycin. We
hope to find a region within the longer protein sequence v that has high similarity with
all of the shorter sequence w. Global alignment will not work because it tries to align all
of v to all of w; local alignment will not work because it tries to align substrings of both
v and w. Thus, we have a distinct alignment application called the Fitting Alignment
Problem.

“Fitting” w to v requires finding a substring v0 of v that maximizes the global align-
ment score between v0 and w among all substrings of v. For example, the best global,
local, and fitting alignments of v = GTAGGCTTAAGGTTA and w = TAGATA are shown
below (with mismatch and indel penalties equal to 1).

Global Local Fitting
GTAGGCTTAAGGTTA GTAGGCTTAAGGTTA GTAGGCTTAAGGTTA
-TAG----A---T-A TAGATA TAGA--TA

Note that the optimal local alignment (with score 3) is not a valid fitting alignment. On
the other hand, the score of the optimal global alignment (6� 9 = �3) is smaller than
that of the best fitting alignment (5� 1� 2 = +2).

Fitting Alignment Problem:
Construct a highest-scoring fitting alignment between two strings.

Input: Strings v and w as well as a scoring matrix Score.
Output: A highest-scoring fitting alignment of v and w as defined by Score.

5H

Overlap alignment

In Chapter 3, we discussed how to use overlapping reads to assemble a genome, a
problem that was complicated by errors in reads. Aligning the ends of the hypothetical
reads shown below offers a way to find overlaps between error-prone reads.

ATGCATGCCGG
T-CC-GAAAC
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An overlap alignment of strings v = v1 . . . vn and w = w1 . . . wm is a global alignment
of a suffix of v with a prefix of w. An optimal overlap alignment of strings v and w
maximizes the global alignment score between an i-suffix of v and a j-prefix of w (i.e.,
between vi . . . vn and w1 . . . wj) among all possible i and j.

Overlap Alignment Problem:
Construct a highest-scoring overlap alignment between two strings.

Input: Two strings and a scoring matrix Score.
Output: A highest-scoring overlap alignment between the two strings as
defined by Score.

5I

Penalizing Insertions and Deletions in Sequence Alignment

Affine gap penalties

We have seen that introducing mismatch and indel penalties can produce more bio-
logically adequate global alignments. However, even with this more robust scoring
model, the A-domain alignment that we previously constructed (with indel penalty
s = 4) still reveals only six of the eight conserved purple columns corresponding to the
non-ribosomal signatures:

YAFDLGYTCMFP-VLL-GGGELHIV-QKETYTAPDEI-AHYIKEHGITYI-KLTPSLFHTIVNTASFAFDANFE
-AFDVS-AGDFARALLTGG-QL-IVCPNEVKMDPASLYA-IIKKYDIT-IFEATPAL--VIPLME-YIYEQKLD

-S-LR-LIVLGGEKIIPIDVIAFRKM---YGHTE-FINHYGPTEATIGA
ISQLQILIV-GSDSC-SME--DFKTLVSRFGSTIRIVNSYGVTEACIDS

STOP and Think: Would increasing the indel penalty from s = 4 to s = 10
reveal the biologically correct alignment?

In our previously defined linear scoring model, if s is the penalty for the insertion
or deletion of a single symbol, then s · k is the penalty for the insertion or deletion of
an interval of k symbols. This cost model unfortunately results in inadequate scoring
for biological sequences. Mutations are often caused by errors in DNA replication
that insert or delete an entire interval of k nucleotides as a single event instead of as k
independent insertions or deletions. Thus, penalizing such an indel by s · k represents
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an excessive penalty. For example, the alignment on the right is more adequate than the
alignment on the left, but they would currently receive the same score.

GATCCAG GATCCAG
GA-C-AG GA--CAG

A gap is a contiguous sequence of space symbols in a row of an alignment. One
way to score gaps more appropriately is to define an affine penalty for a gap of length
k as s + e · (k� 1), where s is the gap opening penalty, assessed to the first symbol
in the gap, and e is the gap extension penalty, assessed to each additional symbol
in the gap. We typically select e to be smaller than s so that the affine penalty for a
gap of length k is smaller than the penalty for k independent single-nucleotide indels
(s · k). For example, if s = 5 and e = 1, then the alignment on the left above is penal-
ized by 2s = 10, whereas the alignment on the right above is only penalized by s+ e = 6.

Alignment with Affine Gap Penalties Problem:
Construct a highest-scoring global alignment of two strings (with affine gap penalties).

Input: Two strings, a scoring matrix Score, and numbers s and e.
Output: A highest scoring global alignment between these strings, as defined
by Score and by the gap opening and extension penalties s and e.

STOP and Think: How would you modify the alignment graph to solve this
problem?

Figure 5.22 illustrates how affine gap penalties can be modeled in the alignment graph
by introducing a new “long” edge for each gap. Since we do not know in advance
where gaps should be located, we need to add edges accounting for every possible gap.
Thus, affine gap penalties can be accommodated by adding all possible vertical and
horizontal edges in the alignment graph to represent all possible gaps. Specifically, we
add edges connecting (i, j) to both (i + k, j) and (i, j + k) with weights s + e · (k� 1)
for all possible gap sizes k, as illustrated in Figure 5.23. For two sequences of length n,
the number of edges in the resulting alignment graph modeling affine gap penalties
increases from O�

n2� to O�
n3�.

STOP and Think: Can you design a DAG with just O�
n2� edges to solve the

Alignment with Affine Gap Penalties Problem?
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FIGURE 5.22 Representing gaps in the alignment graph on the left as “long” insertion
and deletion edges in the alignment graph on the right. For a gap of length k, the weight
of the corresponding long edge is equal to s+e·(k � 1).

FIGURE 5.23 Adding edges corresponding to indels for all possible gap sizes adds a
large number of edges to the alignment graph.

Building Manhattan on three levels

The trick to decreasing the number of edges in the DAG for the Alignment with Affine
Gap Penalties Problem is to increase the number of nodes. To this end, we will build an
alignment graph on three levels; for each node (i, j), we will construct three different
nodes: (i, j)lower, (i, j)middle, and (i, j)upper. The middle level will contain diagonal edges
of weight Score(vi, wj) representing matches and mismatches. The lower level will have
only vertical edges with weight �e to represent gap extensions in v, and the upper
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level will have only horizontal edges with weights �e to represent gap extensions in w
(Figure 5.24).

FIGURE 5.24 Building a three-level graph for alignment with affine gap penalties. The
lower level corresponds to gap extensions in v, the middle level corresponds to matches
and mismatches, and the upper level corresponds to gap extensions in w.

Life in such a three-level city would be difficult because there is currently no way
to move between different levels. To address this issue, we add edges responsible for
opening and closing a gap. To model gap opening, we connect each node (i, j)middle
to both (i + 1, j)lower and (i, j + 1)upper ; we then weight these edges with �s. Closing
gaps does not carry a penalty, and so we introduce zero-weight edges connecting nodes
(i, j)lower and (i, j)upper with the corresponding node (i, j)middle. As a result, a gap of
length k starts and ends at the middle level and is charged �s for the first symbol,
�e for each subsequent symbol, and 0 to close the gap, producing a total penalty of
s + e · (k� 1), as desired. Figure 5.25 illustrates how the path in Figure 5.22 traverses
the three-level alignment graph.

The DAG in Figure 5.25 may be complicated, but it uses only O(n · m) edges for
sequences of length n and m, and a longest path in this graph still constructs an optimal
alignment with affine gap penalties. The three-level alignment graph translates into the
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system of three recurrence relations shown below. Here, loweri, j, middlei, j, and upperi, j
are the lengths of the longest paths from the source node to (i, j)lower, (i, j)middle, and
(i, j)upper, respectively.

loweri, j = max

(
loweri�1, j � e

middlei�1, j � s

middlei,j = max

8
><

>:

loweri, j
middlei�1, j�1 + Score(vi, wj)

upperi, j

upperi,j = max

(
upperi, j�1 � e

middlei, j�1 � s

5J

-  

-

-  

-

FIGURE 5.25 Every path from source to sink in the standard alignment graph shown
in Figure 5.22 corresponds to a path from source to sink in the three-level graph of
the same length (and vice-versa). Every node in the middle level has one outgoing
(blue) edge to the upper level and one outgoing (green) edge to the lower level, both
represented by dashed edges and having weight equal to the gap opening penalty.
Every node in the middle level also has one incoming blue edge from the upper level
and one incoming green edge from the lower level, both represented by dashed edges
and having zero weight (these edges close a gap).
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The variable loweri, j computes the score of an optimal alignment between the i-prefix
of v and the j-prefix of w ending with a deletion (i.e., a gap in w), whereas the variable
upperi, j computes the score of an optimal alignment of these prefixes ending with an
insertion (i.e., a gap in v), and the variable middlei, j computes the score of an optimal
alignment ending with a match or mismatch. The first term in the recurrences for loweri, j
and upperi, j corresponds to extending the gap, whereas the second term corresponds to
initiating the gap.

STOP and Think: Compute an optimal alignment with affine gap penalties for
the A-domains considered in the beginning of this section. How does varying the
gap opening and extension penalties affect the quality of the alignment?

Space-Efficient Sequence Alignment

Computing alignment score using linear memory

To introduce fitting alignments, we used the example of aligning a 20,000 amino acid-
long NRP synthetase from Bacillus brevis against a 600 amino acid-long A-domain from
Streptomyces roseosporus. However, you may not be able to construct this alignment on
your computer because the memory required to store the dynamic programming matrix
is substantial.

The runtime of the dynamic programming algorithm for aligning two strings of
lengths n and m is proportional to the number of edges in their alignment graph, which
is O(n · m). The memory required by this algorithm is also O(n · m), since we need
to store the backtracking references. We will now demonstrate how to construct an
alignment in just O(n) space at the expense of doubling the runtime, meaning that the
runtime is still O(n · m).

A divide-and-conquer algorithm often works when a solution to a large problem
can be constructed from solutions of smaller problem instances. Such a strategy pro-
ceeds in two phases. The divide phase splits a problem instance into smaller instances
and solves them; the conquer phase stitches the smaller solutions into a solution to the
original problem (see DETOUR: Divide-and-Conquer Algorithms). PAGE 287

Before we proceed with the divide-and-conquer algorithm for linear-space align-
ment, note that if we only wish to compute the score of an alignment rather than the
alignment itself, then the space required can easily be reduced to just twice the number
of nodes in a single column of the alignment graph, or O(n). This reduction derives
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from the observation that the only values needed to compute the alignment scores in
column j are the alignment scores in column j � 1. Therefore, the alignment scores
in the columns before column j� 1 can be discarded when computing the alignment
scores for column j, as illustrated in Figure 5.26. Unfortunately, finding the longest
path requires us to store an entire matrix of backtracking pointers, which causes the
quadratic space requirement. The idea of the space reduction technique is that we don’t
need to store any backtracking pointers if we are willing to spend a little more time.

STOP and Think: How could we construct an alignment without storing any
backtracking pointers?

The Middle Node Problem

Given strings v = v1 . . . vn and w = w1 . . . wm, define middle = bm/2c. The middle
column of ALIGNMENTGRAPH(v, w) is the column containing all nodes (i, middle) for
0  i  n. A longest path from source to sink in the alignment graph must cross the
middle column somewhere, and our first task is to figure out where using only O(n)
memory. We refer to a node on this longest path belonging to the middle column as a
middle node. (Note that different longest paths may have different middle nodes, and
a given longest path may have more than one middle node.) In Figure 5.27 (top left),
middle = 3, and the alignment path crosses the middle column at the (unique) middle
node (4, 3).

The key observation is that we can find a longest path’s middle node without having
to construct this path in the alignment graph. We will classify a path from the source to
the sink as an i-path if it passes through the middle column at row i. For example, the
highlighted path in Figure 5.27 is a 4-path. For each i between 0 and n, we would like
to find the length of a longest i-path (denoted LENGTH(i)) because the largest value of
LENGTH(i) over all i will reveal a middle node.

Let FROMSOURCE(i) denote the length of the longest path from the source ending
at (i, middle) and TOSINK(i) denote the length of the longest path from (i, middle) to the
sink. Certainly,

LENGTH(i) = FROMSOURCE(i) + TOSINK(i),

and so we need to compute FROMSOURCE(i) and TOSINK(i) for each i.

STOP and Think: Can you compute FROMSOURCE(i) and TOSINK(i) in linear
space? How much time would it take?
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FIGURE 5.26 Computing an LCS alignment score by storing scores in just two columns
of the alignment graph.
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FIGURE 5.27 (Top left) The alignment graph of ATTCAA and ACGGAA, with the optimal
LCS alignment path highlighted. The number inside each node (i,middle) in the middle
column is equal to LENGTH(i). The node maximizing LENGTH(i) is a middle node
(multiple middle nodes may exist); the middle node in this graph is colored black. (Top
right) Computing FROMSOURCE(i) for all i can be done in O(n) space and O(n · m/2)
time. (Bottom) Computing TOSINK(i) for all i can also be done in O(n) space and
O(n · m/2) time; this requires reversing the direction of all edges and treating the sink
as the source.
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The value of FROMSOURCE(i) is simply si, middle, which we already know can be
computed in linear space. Thus, the values of FROMSOURCE(i) for all i are stored
as si, middle in the middle column of the alignment graph, and computing them re-
quires sweeping through half of the alignment graph from column 0 to the middle
column. Since we need to explore roughly half the edges of the alignment graph to
compute FROMSOURCE(i), we say that the runtime needed for computing all values
FROMSOURCE(i) is proportional to half of the “area” of the alignment graph, or n · m/2
(Figure 5.27 (top right)).

Computing TOSINK(i) is equivalent to finding the longest path from the sink to
(i, middle) if all the edge directions are reversed. Instead of reversing the edges, we
can reverse the strings v = v1 . . . vn and w = w1 . . . wm and find sn�i, m�middle in the
alignment graph for vn . . . v1 and wm . . . w1. Computing TOSINK(i) is therefore similar
to computing FROMSOURCE(i) and can also be done in O(n) space and runtime pro-
portional to n · m/2, or half of the area of the alignment graph (Figure 5.27 (bottom)). In
total, we can compute all values LENGTH(i) = FROMSOURCE(i) + TOSINK(i) in linear
space with runtime proportional to n · m/2 + n · m/2 = n · m, which is the total area of
the alignment graph.

It looks like we have wasted a lot of time just to find a single node on the alignment
path! You may think that this approach is doomed to fail because we have already spent
O(n · m) time (the entire area of the alignment graph) to gain very little information.

A surprisingly fast and memory-efficient alignment algorithm

Once we have found a middle node, we automatically know two rectangles through
which a longest path must travel on either side of this node. As shown in Figure 5.28,
one of these rectangles consists of all nodes above and to the left of the middle node,
whereas the other rectangle consists of all nodes below and to the right of the middle
node. Thus, the area of the two highlighted rectangles is half the total area of the
alignment graph.

We can now divide the problem of finding the longest path from (0, 0) to (n, m) into
two subproblems: finding a longest path from (0,0) to the middle node; and finding
a longest path from the middle node to (n, m). The conquer step finds the two middle
nodes within the smaller rectangles, which can be done in time proportional to the
sum of the areas of these rectangles, or n · m/2 (Figure 5.28 (right)). Note that we have
now reconstructed three nodes of an optimal path. In the next iteration, we will divide
and conquer to find four middle nodes in time equal to the sum of the areas of the
even smaller blue rectangles, which have total area n · m/4 (Figure 5.29). We have now
reconstructed nearly all nodes of an optimal alignment path!
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FIGURE 5.28 (Left) A middle node (shown in black) defines two highlighted rectangles
and illustrates that an optimal path passing through this middle node must travel within
these rectangles. We can therefore eliminate the remaining parts of the alignment graph
from consideration for an optimal alignment path. (Right) Finding middle nodes (shown
as two more black circles) within previously identified rectangles.
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FIGURE 5.29 Finding middle nodes (highlighted as black circles) within previously
identified blue rectangles.

STOP and Think: How much time would it take to find all nodes on an optimal
alignment path?

In general, at each new step before the final step, we double the number of middle
nodes found while halving the runtime required to find middle nodes. Proceeding
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in this way, we will find middle nodes of all rectangles (and thus construct the entire
alignment!) in time equal to

n · m +
n · m

2
+

n · m
4

+ · · · < 2 · n · m = O(n · m) .

Thus, we have arrived at a linear-time alignment algorithm that requires only linear
space.

The Middle Edge Problem

Instead of asking you to implement a divide-and conquer algorithm based on finding
a middle node, we will use a more elegant approach based on finding a middle edge,
or an edge in an optimal alignment path starting at the middle node (more than one
middle edge may exist for a given middle node). Once we find the middle edge, we
again know two rectangles through which the longest path must travel on either side of
the middle edge. But now these two rectangles take up even less than half of the area of
the alignment graph (Figure 5.30), which is an advantage of selecting the middle edge
instead of the middle node.

Middle Edge in Linear Space Problem:
Find a middle edge in the alignment graph in linear space.

Input: Two strings and a scoring matrix Score.
Output: A middle edge in the alignment graph of these strings (where the
edge lengths are defined by Score).

5K

The pseudocode below for LINEARSPACEALIGNMENT describes how to recursively
find a longest path in the alignment graph constructed for a substring vtop+1 . . . vbottom
of v and a substring wleft+1 . . . wright of w. LINEARSPACEALIGNMENT calls the function
MIDDLENODE(top, bottom, left, right), which returns the coordinate i of the middle node
(i, j) defined by the substrings vtop+1 . . . vbottom and wleft+1 . . . wright. The algorithm also
calls MIDDLEEDGE(top, bottom, left, right), which returns "!" , "#", or "&" depending
on whether the middle edge is horizontal, vertical, or diagonal. The linear-space align-
ment of strings v and w is constructed by calling LINEARSPACEALIGNMENT(0, n, 0, m).
The case left = right describes the alignment of an empty string against the string
vtop+1 . . . vbottom , which is trivially computed as the score of a gap formed by bottom� top
vertical edges.
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LINEARSPACEALIGNMENT(top, bottom, left, right)
if left = right

return alignment formed by bottom� top vertical edges
if top = bottom

return alignment formed by right� left horizontal edges
middle b(left + right) /2c
midNode MIDDLENODE(top, bottom, left, right)
midEdge MIDDLEEDGE(top, bottom, left, right)
LINEARSPACEALIGNMENT(top,midNode, left,middle)
output midEdge
if midEdge = "!" or midEdge = "&"

middle middle + 1
if midEdge = "#" or midEdge = "&"

midNode midNode + 1
LINEARSPACEALIGNMENT(midNode, bottom,middle, right)

5L
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FIGURE 5.30 (Left) A middle edge (shown in bold) starts at the middle node (shown as
a black circle). The optimal path travels inside the first highlighted rectangle, passes
the middle edge, and travels inside the second highlighted rectangle afterwards. We
can eliminate the remaining parts of the alignment graph, which takes up over half of
the area formed by the graph, from further consideration. (Right) Finding middle edges
(shown in bold) within previously identified rectangles.
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Epilogue: Multiple Sequence Alignment

Building a three-dimensional Manhattan

Amino acid sequences of proteins performing the same function are likely to be some-
what similar, but these similarities may be elusive in the case of distant species. You
now possess an arsenal of algorithms for aligning pairs of sequences, but if sequence
similarity is weak, pairwise alignment may not identify biologically related sequences.
However, simultaneous comparison of many sequences often allows us to find similari-
ties that pairwise sequence comparison fails to reveal. Bioinformaticians sometimes say
that while pairwise alignment whispers, multiple alignment shouts.

We are now ready to use pairwise sequence analysis to build up our intuition for
comparison of multiple sequences. In our three-way alignment of A-domains from the
introduction, we found 19 conserved columns:

YAFDLGYTCMFPVLLGGGELHIVQKETYTAPDEIAHYIKEHGITYIKLTPSLFHTIVNTA
-AFDVSAGDFARALLTGGQLIVCPNEVKMDPASLYAIIKKYDITIFEATPALVIPLMEYI
IAFDASSWEIYAPLLNGGTVVCIDYYTTIDIKALEAVFKQHHIRGAMLPPALLKQCLVSA

SFAFDANFESLRLIVLGGEKIIPIDVIAFRKMYGHTE-FINHYGPTEATIGA
-YEQKLDISQLQILIVGSDSCSMEDFKTLVSRFGSTIRIVNSYGVTEACIDS
----PTMISSLEILFAAGDRLSSQDAILARRAVGSGV-Y-NAYGPTENTVLS

However, similarities between A-domains are not limited to these 19 columns, as we
can find 10 + 9 + 12 = 31 semi-conservative columns, each of which has two matching
amino acids:

YAFDLGYTCMFPVLLGGGELHIVQKETYTAPDEIAHYIKEHGITYIKLTPSLFHTIVNTA
-AFDVSAGDFARALLTGGQLIVCPNEVKMDPASLYAIIKKYDITIFEATPALVIPLMEYI
IAFDASSWEIYAPLLNGGTVVCIDYYTTIDIKALEAVFKQHHIRGAMLPPALLKQCLVSA

SFAFDANFESLRLIVLGGEKIIPIDVIAFRKMYGHTE-FINHYGPTEATIGA
-YEQKLDISQLQILIVGSDSCSMEDFKTLVSRFGSTIRIVNSYGVTEACIDS
----PTMISSLEILFAAGDRLSSQDAILARRAVGSGV-Y-NAYGPTENTVLS

A multiple alignment of t strings v1, . . . , vt, also called a t-way alignment, is speci-
fied by a matrix having t rows, where the i-th row contains the symbols of vi in order,
interspersed with space symbols. We also assume that no column in a multiple align-
ment contains only space symbols. In the 3-way alignment below, we have highlighted
the most popular symbol in each column using upper case letters:
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A T - G T T a T A
A g C G a T C - A
A T C G T - C T c

0 1 2 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 7 8
0 1 2 3 4 5 5 6 7 8

The multiple alignment matrix is a generalization of the pairwise alignment matrix
to more than two sequences. The three arrays shown below this alignment record the
respective number of symbols in ATGTTATA, AGCGATCA, and ATCGTCTC encountered
up to a given position. Together, these three arrays correspond to a path in a three-
dimensional grid:

(0, 0, 0)! (1, 1, 1)! (2, 2, 2)! (2, 3, 3)! (3, 4, 4)! (4, 5, 5)! (5, 6, 5)!
(6, 7, 6)! (7, 7, 7)! (8, 8, 8)

As the alignment graph for two sequences is a grid of squares, the alignment graph for
three sequences is a grid of cubes. Every node in the 3-way alignment graph has up to
seven incoming edges, as shown in Figure 5.31.

(i – 1, j – 1, k – 1) 

(i, j – 1, k – 1) 

(i – 1, j, k – 1) 

(i – 1, j – 1, k) (i – 1, j, k) 

(i, j, k) (i, j – 1, k) 

(i, j, k – 1) 

FIGURE 5.31 One cube making up the alignment graph for three sequences. Each
node in the alignment graph for three sequences has up to seven incoming edges.

The score of a multiple alignment is defined as the sum of scores of the alignment
columns (or, equivalently, weights of edges in the alignment path), with an optimal
alignment being one that maximizes this score. In the case of an amino acid alphabet,
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we can use a very general scoring method that is defined by a t-dimensional matrix
containing 21t entries that describes the scores of all possible combinations of t symbols
(representing 20 amino acids and the space symbol). See DETOUR: Scoring Multiple PAGE 289
Alignments. Intuitively, we should reward more conserved columns with higher scores.
For example, in the Multiple Longest Common Subsequence Problem, the score of
a column is equal to 1 if all of the column’s symbols are identical, and 0 if even one
symbol disagrees.

Multiple Alignment Problem:
Find the highest-scoring alignment between multiple strings under a given scoring
matrix.

Input: A collection of t strings and a t-dimensional matrix Score.
Output: A multiple alignment of these strings whose score (as defined by the
matrix Score) is maximized among all possible alignments of these strings.

5M

A straightforward dynamic programming algorithm applied to the t-dimensional align-
ment graph solves the Multiple Alignment Problem for t strings. For three sequences
v, w, and u, we define si, j, k as the length of the longest path from the source (0, 0, 0) to
node (i, j, k) in the alignment graph. The recurrence for si, j, k in the three-dimensional
case is similar to the recurrence for pairwise alignment:

si, j, k = max

8
>>>>>>>>>><

>>>>>>>>>>:

si�1, j, k + Score(vi,�,�)
si, j�1, k + Score(�, wj,�)
si, j, k�1 + Score(�,�, uk)

si�1, j�1, k + Score(vi, wj,�)
si�1, j, k�1 + Score(vi,�, uk)

si, j�1, k�1 + Score(�, wj, uk)

si�1, j�1, k�1 + Score(vi, wj, uk)

In the case of t sequences of length n, the alignment graph consists of approximately
nt nodes, and each node has up to 2t � 1 incoming edges, yielding a total runtime
of O�

nt · 2t�. As t grows, the dynamic programming algorithm becomes impractical.
Many heuristics for suboptimal multiple alignments have been proposed to address
this runtime bottleneck.
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A greedy multiple alignment algorithm

Note that the multiple alignment

AT-GTTaTA
AgCGaTC-A
ATCGT-CTc

induces three pairwise alignments:

AT-GTTaTA AT-GTTaTA C-AAgCGaT
AgCGaTC-A ATCGT-CTc ATCGT-CTc

But can we work in the opposite direction, combining optimal pairwise alignments into
a multiple alignment?

STOP and Think:

1. Does an optimal multiple alignment induce optimal pairwise alignments?

2. Try combining the pairwise alignments below into a multiple alignment of
the strings CCCCTTTT, TTTTGGGG, and GGGGCCCC.

CCCCTTTT---- ----CCCCTTTT TTTTGGGG----
----TTTTGGGG GGGGCCCC---- ----GGGGCCCC

Unfortunately, we cannot always combine optimal pairwise alignments into a multiple
alignment because some pairwise alignments may be incompatible. Indeed, the first
pairwise alignment in the above question implies that CCCC occurs before TTTT in
the multiple alignment constructed from these three pairwise alignments. The third
pairwise alignment implies that TTTT occurs before GGGG in the multiple alignment.
But the second pairwise alignment implies that GGGG occurs before CCCC in the multiple
alignment. Thus, CCCC must occur before TTTT, which must occur before GGGG, which
must occur before CCCC, a contradiction.

To avoid incompatibility, some multiple alignment algorithms attempt to greedily
construct a multiple alignment from pairwise alignments that are not necessarily opti-
mal. The greedy heuristic starts by selecting the two strings having the highest scoring
pairwise alignment (among all possible pairs of strings) and then uses this pairwise
alignment as a building block for iteratively adding one string at a time to the growing
multiple alignment. We align the two closest strings at the first step because they often
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provide the best chance of building a reliable multiple alignment. For the same reason,
we then select the string having maximum score against the current alignment at each
stage. But what does it mean to align a string against an alignment of other strings?

An alignment of nucleotide sequences with k columns can be represented as a 4⇥ k
profile matrix like the one in Figure 5.32, which holds the nucleotide frequencies from
each column (amino acid alignments are represented by 20⇥ k profile matrices). The
greedy multiple alignment heuristic adds a string to the current alignment by construct-
ing a pairwise alignment between the string and the profile of the current alignment.
As a result, the problem of constructing a multiple alignment of t sequences is reduced
to constructing t� 1 pairwise alignments.

Alignment

T C G G G - g T T T t t
c C - - t G A c T T a C
a C G - G G A T T T t C
T t G G G - A c T T t t
a - - - G - - - T - C -
T t G G G G A c T T C C
T C G - - G A T T c a t
- - - G G G A T T c C -
T a G G G G A a c - - C
T C G G G t A T a a C C

Profile

A: .2 .1 0 0 0 0 .8 .1 .1 .1 .2 0
C: .1 .5 0 0 0 0 0 .3 .1 .2 .4 .5
G: 0 0 .7 .6 .8 .6 .1 0 0 0 0 0
T: .6 .2 0 0 .1 .1 0 .5 .8 .6 .2 .3

FIGURE 5.32 A profile matrix for a multiple alignment of ten sequences. Each column
of the profile matrix sums to 1 minus the frequency of the space symbol. The most
popular nucleotides in each column are shown as uppercase colored letters.

STOP and Think: Design an algorithm for aligning a string against a profile
matrix. How would you score the columns in such an alignment?

Although greedy multiple alignment algorithms work well for similar sequences, their
performance deteriorates for dissimilar sequences because greedy methods may be
misled by a spurious pairwise alignment. If the first two sequences picked for building
a multiple alignment are aligned in a way that is incompatible with the optimal multiple

281



C H A P T E R 5

alignment, then the error in this initial pairwise alignment will propagate all the way
through to the final multiple alignment.

After learning how to align multiple sequences, you are now ready to solve a chal-
lenge problem that is comparable to the task that Marahiel and his collaborators faced
in 1999.

CHALLENGE PROBLEM: In 1999, Marahiel derived the non-ribosomal codeIn 1999, Marahiel derived the non-ribosomal code
for only 14 of the 20 proteinogenic amino acids (for only 14 of the 20 proteinogenic amino acids (AlaAla,, AsnAsn,, AspAsp,, CysCys,, GlnGln,, GluGlu,,
IleIle,, LeuLeu,, PhePhe,, ProPro,, SerSer,, ThrThr,, TyrTyr,, ValVal) because he lacked A-domain se-) because he lacked A-domain se-
quences for the remaining 6 amino acids. With the availability of many morequences for the remaining 6 amino acids. With the availability of many more
A-domains, you now have the chance to fill in the gaps in Marahiel’s originalA-domains, you now have the chance to fill in the gaps in Marahiel’s original
paper. Construct the multiple alignment of 397 A-domains, reveal the conserva-paper. Construct the multiple alignment of 397 A-domains, reveal the conserva-
tive columns in this alignment, and make your best guess about the signaturestive columns in this alignment, and make your best guess about the signatures
encoding all 20 proteinogenic amino acids based on Marahiel’s alignment.encoding all 20 proteinogenic amino acids based on Marahiel’s alignment.

Detours

Fireflies and the non-ribosomal code

When Marahiel started his groundbreaking work on decoding the non-ribosomal code
in the late 1990s, 160 A-domains had already been sequenced, and the amino acids that
they encode had been experimentally identified. However, it was still not clear exactly
how each A-domain encoded a specific amino acid.

We showed an alignment of three A-domain intervals in the main chapter, but
Marahiel actually aligned all of the 160 identified A-domains in order to reveal the
conservative core. Yet it still remained unclear which columns in this alignment defined
the non-ribosomal signatures.

Help came from an unusual ally: Photinus pyralis, the most common species of firefly.
Fireflies produce an enzyme called luciferase that helps them emit light to attract mates
at night. Different species have different glow patterns, and females respond to males
from the same species by identifying the color, duration, and intensity of their flash.

What do fireflies have to do with the non-ribosomal code? Firefly luciferase belongs
to a class of enzymes called adenylate-forming enzymes, which share similarities with
adenylation domains. For this reason, when Peter Brick published the three-dimensional
structure of firefly luciferase in 1996, Marahiel was quick to take notice. In 1997, he
and Brick joined forces and used firefly luciferase as a scaffold to reconstruct the first
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three-dimensional structure of an A-domain, which coded for phenylalanine (Phe); it is
worth noting that this A-domain belonged to an NRP synthetase encoding Gramicidin
Soviet, the first mass-produced antibiotic.

Marahiel and Brick actually constructed the three-dimensional structure of a larger
complex containing both the A-domain and Phe. This three-dimensional structure
provided information about amino acid residues in the A-domain located close to
Phe, a hypothetical active pocket of the A-domain. Marahiel further demonstrated
experimentally and computationally that amino acids in this active pocket define the
non-ribosomal code, thus producing the 8 purple columns in the 3-way alignment that
we showed at the beginning of the chapter.

Figure 5.33 shows the partial non-ribosomal code deduced by Marahiel. Although
he was able to deduce some signatures, the non-ribosomal code is very redundant,
meaning that multiple mutated variants of a signature all code for the same amino
acid. For some amino acids, this redundancy is pronounced, e.g., Marahiel identified
three very different signatures AWMFAAVL, AFWIGGTF, and FESTAAVY coding for Val.

Amino acid Signature Amino acid Signature
Ala LLFGIAVL Leu AFMLGMVF
Asn LTKLGEVG Orn MENLGLIN
Asp LTKVGHIG Orn VGEIGSID
Cys HESDVGIT Phe AWTIAAVC
Cys LYNLSLIW Pro VQLIAHVV
Gln AQDLGVVD Ser VWHLSLID
Glu AWHFGGVD Thr FWNIGMVH
Glu AKDLGVVD Tyr GTITAEVA
Ile GFFLGVVY Tyr ALVTGAVV
Ile AFFYGITF Tyr ASTVAAVC
Leu AWFLGNVV Val AFWIGGTF
Leu AWLYGAVM Val FESTAAVY
Leu GAYTGEVV Val AWMFAAVL

FIGURE 5.33 Marahiel’s partial non-ribosomal code. Some proteinogenic amino acids
are missing from this table because they were not present in Marahiel’s dataset.

Finding a longest common subsequence without building a city

Define the i-prefix of a string as the substring formed by its first i letters and the j-prefix
of a string as the substring formed by its final j letters. Also, given strings v and w,
let LCSi, j denote an LCS between the i-prefix of v and the j-prefix of w, and let si, j be
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the length of LCSi, j. By definition, si, 0 = s0, j = 0 for all values of i and j. Next, LCSi, j
could contain both vi and wj, in which case these symbols match, and LCSi, j extends an
LCS of the shorter prefixes v1 . . . vi�1 and w1 . . . wj�1. Otherwise, either vi or wj is not
present in LCSi, j. If vi is not present in LCSi, j, then this LCS is therefore also an LCS of
v1 . . . vi�1 and w1 . . . wj. A similar argument applies to the case when wj is not present
in LCSi, j. Therefore, si, j satisfies the following recurrence, the same one we derived in
the main text using a Manhattan-like grid:

si, j = max

8
><

>:

si�1, j
si, j�1
si�1, j�1 + 1, if vi = wj

Constructing a topological ordering

The first applications of topological ordering resulted from large management projects
in an attempt to schedule a sequence of tasks based on their dependencies (such as the
Dressing Challenge). In these projects, tasks are represented by nodes, and an edge
connects node a to node b if task a must be completed before task b can be started.

STOP and Think: Prove that every DAG has a node with no incoming edges
and a node with no outgoing edges.

The following algorithm for constructing a topological ordering is based on the obser-
vation that every DAG has at least one node with no incoming edges. We will label
one of these nodes as v1 and then remove this node from the graph along with all its
outgoing edges. The resulting graph is also a DAG, which in turn must have a node
with no incoming edges; we label this node v2, and again remove it from the graph
along with its outgoing edges. The resulting algorithm proceeds until all nodes have
been removed, producing a topological order v1, . . . , vn. This algorithm runs in time
proportional to the number of edges in the input DAG.
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TOPOLOGICALORDERING(Graph)
List empty list
Candidates set of all nodes in Graph with no incoming edges
while Candidates is non-empty

select an arbitrary node a from Candidates
add a to the end of List and remove it from Candidates
for each outgoing edge from a to another node b

remove edge (a, b) from Graph
if b has no incoming edges

add b to Candidates
if Graph has edges that have not been removed

return “the input graph is not a DAG”
else

return List

5N

PAM scoring matrices

Mutations of a gene’s nucleotide sequence often change the amino acid sequence of
the translated protein. Some of these mutations impair the protein’s ability to function,
making them rare events in molecular evolution. Asn, Asp, Glu, and Ser are the most
“mutable” amino acids, whereas Cys and Trp are the least mutable. Knowledge of the
likelihood of each possible mutation allows biologists to construct amino acid scoring
matrices for biologically sound sequence alignments in which different substitutions are
penalized differently. The (i, j)-th entry of the amino acid scoring matrix Score usually
reflects how often the i-th amino acid substitutes the j-th amino acid in alignments of
related protein sequences. As a result, optimal alignments of amino acid sequences may
have very few matches but still represent biologically adequate alignments.

How do biologists know which mutations are more likely than others? If we know
a large set of pairwise alignments of related sequences (e.g., sharing at least 90% of
amino acids), then computing Score(i, j) is based on counting how many times the
corresponding amino acids are aligned. However, we need to know the scoring matrix
in advance in order to build this set of starter alignments — a catch-22!

Fortunately, the correct alignment of very similar sequences is so obvious that it can
be constructed even with a primitive scoring scheme that does not account for varying
mutation propensities (such as +1 for matches and -1 for mismatches and indels), thus
resolving the conundrum. After constructing these obvious alignments, we can use
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them to compute a new scoring matrix that we can use iteratively to form less and less
obvious alignments.

This simplified description hides some details. For example, the probability of Ser
mutating into Phe in species that diverged 1 million years ago is smaller than the
probability of the same mutation in species that diverged 100 million years ago. This
observation implies that scoring matrices for protein comparison should depend on
the similarity of the organisms and the speed of evolution of the proteins of interest.
In practice, the proteins that biologists use to create an initial alignment are extremely
similar, having 99% of their amino acids conserved (e.g., most proteins shared by
humans and chimpanzees). Sequences that are 99% similar are said to be 1 PAM unit
diverged (“PAM” stands for “point accepted mutation”). You can think of a PAM unit
as the amount of time in which an “average” protein mutates 1% of its amino acids.

The PAM1 scoring matrix is defined as follows from many pairwise alignments of
99% similar proteins. Given a set of pairwise alignments, let M(i, j) be the number of
times that the i-th and j-th amino acids appear in the same column, divided by the
total number of times that the i-th amino acid appears in all sequences. Let f (j) be the
frequency of the j-th amino acid in the sequences, or the number of times it appears
across all sequences divided by the combined lengths of the two sequences. The (i, j)-th
entry of the PAM1 matrix is defined as

log
✓

M(i, j)
f (j)

◆
.

For a larger number of PAM units n, the PAMn matrix is computed based on the
observation that the matrix Mn (the result of multiplying M by itself n times) holds the
empirical probabilities that one amino acid mutates to another during n PAM units. The
(i, j)-th entry of the PAMn scoring matrix is thus given by

log
✓

Mn(i, j)
f (j)

◆
.

The PAM250 scoring matrix is shown in Figure 5.34.
This approach assumes that the frequencies of the amino acids f (j) remain constant

over time, and that the mutational processes in an interval of 1 PAM unit operate
consistently over long periods. For large n, the resulting PAM matrices often allow us
to find related proteins, even when the alignment has few matches.
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A C D E F G H I K L M N P Q R S T V W Y -

A 22 -2-2 00 00 -3-3 11 -1-1 -1-1 -1-1 -2-2 -1-1 00 11 00 -2-2 11 11 00 -6-6 -3-3 -8-8

C -2 12 -5 -5 -4 -3 -3 -2 -5 -6 -5 -4 -3 -5 -4 0 -2 -2 -8 0 -8

D 00 -5-5 44 33 -6-6 11 11 -2-2 00 -4-4 -3-3 22 -1-1 22 -1-1 00 00 -2-2 -7-7 -4-4 -8-8

E 0 -5 3 4 -5 0 1 -2 0 -3 -2 1 -1 2 -1 0 0 -2 -7 -4 -8

F -3-3 -4-4 -6-6 -5-5 99 -5-5 -2-2 11 -5-5 22 00 -3-3 -5-5 -5-5 -4-4 -3-3 -3-3 -1-1 00 77 -8-8

G 1 -3 1 0 -5 5 -2 -3 -2 -4 -3 0 0 -1 -3 1 0 -1 -7 -5 -8

H -1-1 -3-3 11 11 -2-2 -2-2 66 -2-2 00 -2-2 -2-2 22 00 33 22 -1-1 -1-1 -2-2 -3-3 00 -8-8

I -1 -2 -2 -2 1 -3 -2 5 -2 2 2 -2 -2 -2 -2 -1 0 4 -5 -1 -8

K -1-1 -5-5 00 00 -5-5 -2-2 00 -2-2 55 -3-3 00 11 -1-1 11 33 00 00 -2-2 -3-3 -4-4 -8-8

L -2 -6 -4 -3 2 -4 -2 2 -3 6 4 -3 -3 -2 -3 -3 -2 2 -2 -1 -8

M -1-1 -5-5 -3-3 -2-2 00 -3-3 -2-2 22 00 44 66 -2-2 -2-2 -1-1 00 -2-2 -1-1 22 -4-4 -2-2 -8-8

N 0 -4 2 1 -3 0 2 -2 1 -3 -2 2 0 1 0 1 0 -2 -4 -2 -8

P 11 -3-3 -1-1 -1-1 -5-5 00 00 -2-2 -1-1 -3-3 -2-2 00 66 00 00 11 00 -1-1 -6-6 -5-5 -8-8

Q 0 -5 2 2 -5 -1 3 -2 1 -2 -1 1 0 4 1 -1 -1 -2 -5 -4 -8

R -2-2 -4-4 -1-1 -1-1 -4-4 -3-3 22 -2-2 33 -3-3 00 00 00 11 66 00 -1-1 -2-2 22 -4-4 -8-8

S 1 0 0 0 -3 1 -1 -1 0 -3 -2 1 1 -1 0 2 1 -1 -2 -3 -8

T 11 -2-2 00 00 -3-3 00 -1-1 00 00 -2-2 -1-1 00 00 -1-1 -1-1 11 33 00 -5-5 -3-3 -8-8

V 0 -2 -2 -2 -1 -1 -2 4 -2 2 2 -2 -1 -2 -2 -1 0 4 -6 -2 -8

W -6-6 -8-8 -7-7 -7-7 00 -7-7 -3-3 -5-5 -3-3 -2-2 -4-4 -4-4 -6-6 -5-5 22 -2-2 -5-5 -6-6 1717 00 -8-8

Y -3 0 -4 -4 7 -5 0 -1 -4 -1 -2 -2 -5 -4 -4 -3 -3 -2 0 10 -8

- -8-8 -8-8 -8-8 -8-8 -8-8 -8-8 -8-8 -8-8 -8-8 -8-8 -8-8 -8-8 -8-8 -8-8 -8-8 -8-8 -8-8 -8-8 -8-8 -8-8

FIGURE 5.34 The PAM250 scoring matrix for protein alignment with indel penalty 8.

Divide-and-conquer algorithms

We will use the problem of sorting a list of integers as an example of a divide-and-
conquer algorithm. We begin from the problem of merging, in which we want to com-
bine two sorted lists List1 and List2 into a single sorted list (Figure 5.35). The MERGE

algorithm combines two sorted lists into a single sorted list in O(|List1|+ |List2|) time
by iteratively choosing the smallest remaining element in List1 and List2 and moving it
to the growing sorted list.
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List1 2 5 7 8 2 5 7 8 2 5 7 8 2 5 7 8 2 5 7 8 2 5 7 8
List2 3 4 6 3 4 6 3 4 6 3 4 6 3 4 6 3 4 6
SortedList 2 3 4 5 6 7 8

FIGURE 5.35 Merging the sorted lists (2, 5, 7, 8) and (3, 4, 6) results in the sorted list
(2, 3, 4, 5, 6, 7, 8).

MERGE(List1, List2)
SortedList empty list
while both List1 and List2 are non-empty

if the smallest element in List1 is smaller than the smallest element in List2
move the smallest element from List1 to the end of SortedList

else
move the smallest element from List2 to the end of SortedList

move any remaining elements from either List1 or List2 to the end of SortedList
return SortedList

MERGE would be useful for sorting an arbitrary list if we knew how to divide an arbi-
trary (unsorted) list into two already sorted half-sized lists. However, it may seem that
we are back to where we started, except now we have to sort two smaller lists instead
of one big one. Yet sorting two smaller lists is a preferable computational problem. To
see why, let’s consider the MERGESORT algorithm, which divides an unsorted list into
two parts and then recursively conquers each smaller sorting problem before merging
the sorted lists.

MERGESORT(List)
if List consists of a single element

return List
FirstHalf  first half of List
SecondHalf  second half of List
SortedFirstHalf  MERGESORT(FirstHalf )
SortedSecondHalf  MERGESORT(SecondHalf )
SortedList MERGE(SortedFirstHalf, SortedSecondHalf)
return SortedList

STOP and Think: What is the runtime of MERGESORT?
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Figure 5.36 shows the recursion tree of MERGESORT, consisting of log2 n levels, where
n is the size of the original unsorted list. At the bottom level, we must merge two
sorted lists of approximately n/2 elements each, requiring O(n/2 + n/2) = O(n)
time. At the next highest level, we must merge four lists of n/4 elements, requir-
ing O(n/4 + n/4 + n/4 + n/4) = O(n) time. This pattern can be generalized: the i-th
level contains 2i lists, each having approximately n/2i elements, and requires O(n)
time to merge. Since there are log2 n levels in the recursion tree, MERGESORT therefore
requires O(n · log2 n) runtime overall, which offers a speedup over naive O�

n2� sorting
algorithms.

divide 

conquer 

divide 

divide 

conquer 

conquer 

1  3  4  5  6  7  8  9 

4  6  7  9 1  3  5  8 

6  7 4  9 5  8 1  3 

4 9 5 8 3 1 7 6 

9  4  7  6  1  3  8  5   

9  4  7  6 1  3 8  5 

1  3  8  5 9  4  7  6  

FIGURE 5.36 The recursion tree for sorting an 8-element list with MERGESORT. The
divide (upper) steps consist of log28 = 3 levels, where the input list is split into smaller
and smaller sublists. The conquer (lower) steps consist of the same number of levels,
as the sorted sublists are merged back together.

Scoring multiple alignments

The choice of scoring function can drastically affect the quality of a multiple alignment.
In the main chapter, we described a way to score t-way alignments by using a t-
dimensional scoring matrix. Below, we describe more practical approaches to scoring
alignments.
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The columns of a t-way alignment describe a path in a t-dimensional alignment
graph whose edge weights are defined by the scoring function. Using the statistically
motivated entropy score, the score of a multiple alignment is defined as the sum of the
entropies of its columns. Recall from Chapter 2 that the entropy of a column is equal to
�Â px · log2 px , where the sum is taken over all symbols x present in the column, and
px is the frequency of symbol x in the column.

In Chapter 2, we saw that more highly conserved columns will have lower entropy
scores. Because we wish to maximize the alignment score, we use the negative of
entropy in order to ensure that more highly conserved columns receive higher scores.
Finding a longest path in the t-dimensional alignment graph therefore corresponds to
finding a multiple alignment with minimal entropy.

Another popular scoring approach is the Sum-of-Pairs score (SP-score). A multiple
alignment Alignment of t sequences induces a pairwise alignment between the i-th and
j-th sequences, having score s(Alignment, i, j). The SP-score for a multiple alignment
simply adds the scores of each induced pairwise alignment:

SP-SCORE(Alignment) = Â
1i<jt

s(Alignment, i, j).

EXERCISE BREAK: Compute the entropy score and SP-score of Marahiel’s
3-way alignment, reproduced below.

YAFDLGYTCMFPVLLGGGELHIVQKETYTAPDEIAHYIKEHGITYIKLTPSLFHTIVNTA
-AFDVSAGDFARALLTGGQLIVCPNEVKMDPASLYAIIKKYDITIFEATPALVIPLMEYI
IAFDASSWEIYAPLLNGGTVVCIDYYTTIDIKALEAVFKQHHIRGAMLPPALLKQCLVSA

SFAFDANFESLRLIVLGGEKIIPIDVIAFRKMYGHTE-FINHYGPTEATIGA
-YEQKLDISQLQILIVGSDSCSMEDFKTLVSRFGSTIRIVNSYGVTEACIDS
----PTMISSLEILFAAGDRLSSQDAILARRAVGSGV-Y-NAYGPTENTVLS
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Bibliography Notes

Edit distance was introduced by Levenshtein, 1966. The local alignment algorithm
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Of Mice and Men

“I have further been told,” said the cat, “that you can also transform yourself into
the smallest of animals, for example, a rat or a mouse. But I can scarcely believe
that. I must admit to you that I think it would be quite impossible.”

“Impossible!” cried the ogre. “You shall see!”

He immediately changed himself into a mouse and began to run about the floor. As
soon as the cat saw this, he fell upon him and ate him up.

How different are the human and mouse genomes?

When Charles Perrault described the transformation of an ogre into a mouse in “Puss in
Boots”, he could hardly have anticipated that three centuries later, research would show
that the human and mouse genomes are surprisingly similar. Nearly every human gene
has a mouse counterpart, although mice greatly outperform us when it comes to the
olfactory genes responsible for smell. We are essentially mice without tails — we even
have the genes needed to make a tail, but these genes have been “silenced” during our
evolution.

We started with a fairy tale question: “How can an ogre transform into a mouse?”
Since we share most of the same genes with mice, we now ask a question about mam-
malian evolution: “What evolutionary forces have transformed the genome of the
human-mouse ancestor into the present-day human and mouse genomes?”

If a precocious child had grown out of reading fairy tales and wanted to learn about
how the human and mouse genomes differ, then here is what we would tell her. You can
cut the 23 human chromosomes into 280 pieces, shuffle these DNA fragments, and then
glue the pieces together in a new order to form the 20 mouse chromosomes. The truth,
however, is that evolution has not employed a single dramatic cut-and-paste operation;
instead, it applies smaller changes known as genome rearrangements, which will be
our focus in this chapter.

Unfortunately, our bioinformatics time machine won’t take us more than a few
centuries into the past. If it did, we could travel 75 million years back in time, watching
humans slowly change into a small, furry animal that lived with dinosaurs. Then, we
could travel back to the present, watching how this animal evolved into the mouse. In
this chapter, we hope to understand the genome rearrangements that have separated
the human and mouse genomes without having to revamp our time machine.
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Synteny blocks

To simplify genome comparison, we will first focus on the X chromosome, which is one
of the two sex-determining chromosomes in mammals and has retained nearly all its
genes throughout mammalian evolution (see DETOUR: Why is the Gene Content ofPAGE 340
Mammalian X Chromosomes So Conserved?). We can therefore view the X chromo-
some as a “mini-genome” when comparing mice to humans, since this chromosome’s
genes have not jumped around onto different chromosomes (and vice-versa).

It turns out not only that most human genes have mouse counterparts, but also that
hundreds of similar genes often line up one after another in the same order in the two
species genomes. Each of the eleven colored segments in Figure 6.1 represents such a
procession of similar genes and is called a synteny block. Later, we will explain how to
construct synteny blocks and what the left and right directions of the blocks signify.

1 -7 6 -10 9 -8 2 -11 -3 5 4Mouse 

Human 

Unknown ancestor
(~75 million years ago) 

FIGURE 6.1 Mouse and human X chromosomes represented as eleven colored, directed
segments (synteny blocks).

Synteny blocks simplify the comparison of the mouse and human X chromosomes
from about 150 million base pairs to only eleven units. This simplification is analogous
to comparing two similar photographs. If we compare the images one pixel at a time,
we may be overwhelmed by the scale of the problem; instead, we need to zoom out
in order to notice higher-level patterns. It is no accident that biologists use the term
“resolution” to discuss the level at which genomes are analyzed.

Reversals

You have probably been wondering how the genome changes when it undergoes a
genome rearrangement. Genome rearrangements were discovered 90 years ago when
Alfred Sturtevant was studying fruit fly mutants with scarlet- and peach-colored eyes
as well as abnormally shaped deltoid wings. Sturtevant analyzed the genes coding
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for these traits, called scarlet, peach, and delta, and he was amazed to find that the
arrangement of these genes in Drosophila melanogaster (scarlet, peach, delta) differed
from their arrangement in Drosophila simulans (scarlet, delta, peach). He immediately
conjectured that the chromosomal segment containing peach and delta must have been
flipped around (see DETOUR: Discovery of Genome Rearrangements). Sturtevant PAGE 340
had witnessed the most common form of genome rearrangement, called a reversal,
which flips around an interval of a chromosome and inverts the directions of any
synteny blocks within the interval.

Figure 6.2 shows a series of seven reversals transforming the mouse X chromosome
into the human X chromosome. If this scenario is correct, then the X chromosome of
the human-mouse ancestor must be represented by one of the intermediate synteny
block orderings. Unfortunately, this series of seven reversals offers only one of 1,070
different seven-step scenarios transforming the mouse X chromosome into the human
X chromosome. We have no clue which scenario is correct, or even whether the correct
scenario had exactly seven reversals.

STOP and Think: Can you convert the mouse X chromosome into the human X
chromosome using only six reversals?

Regardless of how many reversals separate the human and mouse X chromosomes,
reversals must be rare genomic events. Indeed, genome rearrangements typically
cause the death or sterility of the mutated organism, thus preventing it from passing
the rearrangement on to the next generation. However, a tiny fraction of genome
rearrangements may have a positive effect on survival and propagate through a species
as the result of natural selection. When a population becomes isolated from the rest of
its species for long enough, rearrangements can even create a new species.

Rearrangement hotspots

Geology provides a thought-provoking analogy for thinking about genome evolution.
You might like to think of genome rearrangements as “genomic earthquakes” that
dramatically change the chromosomal architecture of an organism. Genome rearrange-
ments contrast with much more frequent point mutations, which work slowly and are
analogous to “genomic erosion”.

You can visualize a reversal as breaking the genome on both sides of a chromosomal
interval, flipping the interval, and then gluing the resulting segments in a new order.
Keeping in mind that earthquakes occur more frequently along fault lines, we wonder
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1 -7 6 -10 9 -8 2 -11 -3 5 4
Mouse 

+1 -7 +6 -10 +9 -8 +2 -11 -3 +5 +4 

+1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 

Human 

FIGURE 6.2 Transforming the mouse X chromosome into the human X chromosome
with seven reversals. Each synteny block is uniquely colored and labeled with an integer
between 1 and 11; the positive or negative sign of each integer indicates the synteny
block’s direction (pointing right or left, respectively). Two short vertical segments
delineate the endpoints of the inverted interval in each reversal. Suppose that this
evolutionary scenario is correct and that, say, the fifth synteny block arrangement from
the top presents the true ancestral arrangement. Then the first four reversals happened
on the evolutionary path from mice to the human-mouse common ancestor (traveling
backward in time), and the final three reversals happened on the evolutionary path
from the common ancestor to humans (traveling forward in time). In this chapter, we
are not trying to reconstruct the ancestral genome and thus are not concerned with
whether a certain reversal travels backward or forward in time.

if a similar principle holds for reversals — are they occurring over and over again in
the same genomic regions? A fundamental question in chromosome evolution studies
is whether the breakage points of reversals (i.e., the ends of the inverted intervals)
occur along “fault lines” called rearrangement hotspots. If such hotspots exist in the
human genome, we want to locate them and determine how they might relate to genetic
disorders, which are often attributable to rearrangements.
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Of course, we should rigorously define what we mean by a “rearrangement hotspot”.
Re-examining the seven-reversal scenario changing the mouse X chromosome into the
human X chromosome in Figure 6.2, we record the endpoints of each reversal using
vertical segments. Regions affected by multiple reversals are indicated by multiple
vertical segments in the human X chromosome. For example, the region adjacent to
the pointed side of block 3 in Figure 6.2 is used as an endpoint of both the fourth and
fifth reversals. As a result, we have placed two vertical lines between blocks 3 and 4
in the human X chromosome. However, just because we showed two breakage points
in this region does not imply that this region is a rearrangement hotspot, since the
reversals in Figure 6.2 represent just one possible evolutionary scenario. Because the
true rearrangement scenario is unknown, it is not immediately clear how we could
determine whether rearrangement hotspots exist.

The Random Breakage Model of Chromosome Evolution

In 1973, Susumu Ohno proposed the Random Breakage Model of chromosome evo-
lution. This hypothesis states that the breakage points of rearrangements are selected
randomly, implying that rearrangement hotspots in mammalian genomes do not exist.
Yet Ohno’s model lacked supporting evidence when it was introduced. After all, how
could we possibly determine whether rearrangement hotspots exist without knowing
the exact sequence of rearrangements separating two species?

STOP and Think: Consider the following questions.

1. Say that a series of random reversals result in one huge synteny block
covering 90% of the genome in addition to 99 tiny synteny blocks covering
the remaining 10% of the genome. Should we be surprised?

2. What if random reversals result in 100 synteny blocks of roughly the same
length? Should we be surprised?

The idea that we wish to impress on you in the preceding questions is that we can test
the Random Breakage Model by analyzing the distribution of synteny block lengths.
For example, the lengths of the human-mouse synteny blocks on the X chromosome
vary widely, with the largest block (block 11 in Figure 6.2) taking up nearly 25% of the
entire length of the X chromosome. Is this variation in synteny block length consistent
with the Random Breakage Model?
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FIGURE 6.3 (Top) A histogram showing the number of blocks of each size for a simulated
genome with 25,000 genes (an approximation for the number of genes in a mammalian
genome) after 320 randomly chosen reversals. Blocks having more than 100 genes
are not shown. (Bottom) A histogram of synteny block lengths averaged over 100
simulations, fitted by the exponential distribution.

In 1984, Joseph Nadeau and Benjamin Taylor asked what the expected lengths
of synteny blocks should be after N reversals occurring at random locations in the
genome. If we rule out the unlikely event that two random reversals cut the chromosome
in exactly the same position, then N random reversals cut the chromosome in 2N
locations and produce 2N + 1 synteny blocks. Figure 6.3 (top) depicts the result of a
computational experiment in which 320 random reversals are applied to a simulated
chromosome consisting of 25,000 genes, producing 2 · 320 + 1 = 641 synteny blocks.
The average synteny block size is 25,000/641 ⇡ 34 genes, but this does not mean that
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all synteny blocks should have approximately 34 genes. If we select random locations
for breakage points, then some blocks may have only a few genes, whereas other
blocks may contain over a hundred. Figure 6.3 (bottom) averages the results of 100
such simulations and illustrates that the distribution of synteny block lengths can be
approximated by a curve corresponding to an exponential distribution (see DETOUR: PAGE 341
The Exponential Distribution). The exponential distribution predicts that there will
be about seven blocks having 34 genes and one or two much larger blocks having 100
genes.

What happens when we look at the histogram for the real human and mouse synteny
blocks? When Nadeau and Taylor constructed this histogram for the limited genetic
data available in 1984, they observed that the lengths of blocks fit the exponential
distribution well. In the 1990s, more accurate synteny block data fit the exponential
distribution even better (Figure 6.4). Case closed — even though we don’t know the
exact rearrangements causing our genome to evolve over the last 75 million years, these
rearrangements must have followed the Random Breakage Model!
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FIGURE 6.4 Histogram of human-mouse synteny block lengths (only synteny blocks
longer than 1 million nucleotides are shown). The histogram is fitted by an exponential
distribution.

STOP and Think: Do you agree with the logic behind this argument?

Sorting by Reversals

We now have evidence in favor of the Random Breakage Model, but this evidence is
far from conclusive. To test this model, let’s start building a mathematical model for

299



C H A P T E R 6

rearrangement analysis. We will therefore return to a problem that we hinted at in the
introduction, which is finding the minimum number of reversals that could transform
the mouse X chromosome into the human X chromosome.

STOP and Think: From a biological perspective, why do you think we want to
find the minimum possible number of reversals?

We ask for the minimum number of reversals in accordance with a principle called
Occam’s razor. When presented with some quandary, we should explain it using the
simplest hypothesis that is consistent with what we already know. In this case, it seems
most reasonable that evolution would take the “shortest path” between two species,
i.e., the most parsimonious evolutionary scenario. Evolution may not always take the
shortest path, but even when it does not, the number of steps in the true evolutionary
scenario often comes close to the number of steps in the most parsimonious scenario.
How, then, can we find the length of this shortest path?

Genome rearrangement studies typically ignore the lengths of synteny blocks and
represent chromosomes by signed permutations. Each block is labeled by a number,
which is assigned a positive/negative sign depending on the block’s direction. The
number of elements in a signed permutation is its length. As you can see from Figure 6.2,
the human and mouse X chromosomes can be represented by the following signed
permutations of length 11:

Mouse: (+1 �7 +6 �10 +9 �8 +2 �11 �3 +5 +4)
Human: (+1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11)

In the rest of the chapter, we will refer to signed permutations as permutations for
short. Because we assume that each synteny block is unique, we do not allow repeated
numbers in permutations (e.g., (+1 �2 +3 +2) is not a permutation).

EXERCISE BREAK: How many permutations of length n are there?

We can model reversals by inverting the elements within an interval of a permutation,
then switching the signs of any elements within the inverted interval. For example, the
cartoon in Figure 6.5 illustrates how a reversal changes the permutation (+1 +2 +3 +4
+5 +6 +7 +8 +9 +10) into (+1 +2 +3 �8 �7 �6 �5 �4 +9 +10). This reversal can
be viewed as first breaking the permutation between +3 and +4 as well as between +8
and +9,
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(+1 +2 +3 | +4 +5 +6 +7 +8 | +9 +10) .

It then inverts the middle segment,

(+1 +2 +3 | �8 �7 �6 �5 �4 | +9 +10) ,

and finally glues the three segments back together to form a new permutation,

(+1 +2 +3 �8 �7 �6 �5 �4 +9 +10) .

1 3 2 10 9 

(+1  +2  +3  +4  +5  +6  +7  +8  +9  +10) 

4 

5 7 

8 

6 
7 

(+1  +2  +3  -8  -7  -6  -5  -4  +9  +10) 

6 

1 3 2 10 9 

4 

5 

8 

FIGURE 6.5 A cartoon illustrating how a reversal breaks a chromosome in two places
and inverts the segment between the two breakage points. Note that the reversal
changes the sign of each element within the permutation’s inverted segment.

EXERCISE BREAK: How many different reversals can be applied to a permuta-
tion of length n?

We define the reversal distance between permutations P and Q, denoted drev(P, Q), as
the minimum number of reversals required to transform P into Q.

Reversal Distance Problem:
Calculate the reversal distance between two permutations.

Input: Two permutations of equal length.
Output: The reversal distance between these permutations.

We represented the human X chromosome by (+1 +2 +3 +4 +5 +6 +7 +8 +9 +10
+11); such a permutation, in which blocks are ordered from smallest to largest with
positive directions, is called the identity permutation. The reason why we used the
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identity permutation of length 11 to represent the human X chromosome is that when
comparing two genomes, we can label the synteny blocks in one of the genomes
however we like. The block labeling for which the human X chromosome is the identity
permutation automatically induces the representation of the mouse chromosome as

(+1 �7 +6 �10 +9 �8 +2 �11 �3 +5 +4) .

Of course, as shown in Figure 6.6, we could have instead encoded the mouse X chro-
mosome as the identity permutation, which would have induced the encoding of the
human X chromosome as

(+1 +7 �9 +11 +10 +3 �2 �6 +5 �4 �8) .

1 -7 6 -10 9 -8 2 -11 -3 5 4
Mouse 

+1 +7 -9 +11 +10 +3 -2 -6 +5 -4 -8 

+1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 

Human 

FIGURE 6.6 Encoding the mouse X chromosome as the identity permutation implies
encoding the human X chromosome as (+1 +7 �9 +11 +10 +3 �2 �6 +5 �4 �8).

Because we have the freedom to label synteny blocks however we like, we will consider
an equivalent version of the Reversal Distance Problem in which permutation Q is the
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identity permutation (+1 +2 . . .+n). This computational problem is called sorting by
reversals, and we denote the minimum number of reversals required to sort P into the
identity permutation as drev(P). The history of sorting by reversals is founded in a
culinary application and involves two celebrities (see DETOUR: Bill Gates and David PAGE 342
X. Cohen Flip Pancakes).

Sorting by Reversals Problem:
Compute the reversal distance between a permutation and the identity permutation.

Input: A permutation P.
Output: The reversal distance drev(P).

Here is a sorting of (+2�4�3 +5�8�7�6 +1) using five reversals, with the inverted
interval at each step shown in red:

(+2 �4 �3 +5 �8 �7 �6 +1)
(+2 +3 +4 +5 �8 �7 �6 +1)
(+2 +3 +4 +5 +6 +7 +8 +1)
(+2 +3 +4 +5 +6 +7 +8 �1)
(�8 �7 �6 �5 �4 �3 �2 �1)
(+1 +2 +3 +4 +5 +6 +7 +8)

STOP and Think: Can you sort this permutation using fewer reversals?

Here is a faster sorting:

(+2 �4 �3 +5 �8 �7 �6 +1)
(+2 +3 +4 +5 �8 �7 �6 +1)
(�5 �4 �3 �2 �8 �7 �6 +1)
(�5 �4 �3 �2 �1 +6 +7 +8)
(+1 +2 +3 +4 +5 +6 +7 +8)

STOP and Think: Consider the following questions.

1. Is it possible to sort this permutation even faster?

2. During sorting by reversals, the intermediate permutations in the example
above are getting more and more “ordered”. Can you come up with a
quantitative measure of how ordered a permutation is?
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A Greedy Heuristic for Sorting by Reversals

Let’s see if we can design a greedy heuristic to approximate drev(P). The simplest idea
is to perform reversals that fix +1 in the first position, followed by reversals that fix
+2 in the second position, and so on. For example, element 1 is already in the correct
position and has the correct sign (+) in the mouse X chromosome, but element 2 is not
in the correct position. We can keep element 1 fixed and move element 2 to the correct
position by applying a single reversal.

(+1 �7 +6 �10 +9 �8 +2 �11 �3 +5 +4)
(+1 �2 +8 �9 +10 �6 +7 �11 �3 +5 +4)

One more reversal flips element 2 around so that it has the correct sign:

(+1 �2 +8 �9 +10 �6 +7 �11 �3 +5 +4)
(+1 +2 +8 �9 +10 �6 +7 �11 �3 +5 +4)

By iterating, we can successively move larger and larger elements to their correct
positions in the identity permutation by following the reversals below. The inverted
interval of each reversal is still shown in red, and elements that have been placed in the
correct position are shown in blue.

(+1 �7 +6 �10 +9 �8 +2 �11 �3 +5 +4)
(+1 �2 +8 �9 +10 �6 +7 �11 �3 +5 +4)
(+1 +2 +8 �9 +10 �6 +7 �11 �3 +5 +4)
(+1 +2 +3 +11 �7 +6 �10 +9 �8 +5 +4)
(+1 +2 +3 �4 �5 +8 �9 +10 �6 +7 �11)
(+1 +2 +3 +4 �5 +8 �9 +10 �6 +7 �11)
(+1 +2 +3 +4 +5 +8 �9 +10 �6 +7 �11)
(+1 +2 +3 +4 +5 +6 �10 +9 �8 +7 �11)
(+1 +2 +3 +4 +5 +6 �7 +8 �9 +10 �11)
(+1 +2 +3 +4 +5 +6 +7 +8 �9 +10 �11)
(+1 +2 +3 +4 +5 +6 +7 +8 +9 +10 �11)
(+1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11)

This example motivates a greedy heuristic called GREEDYSORTING. We say that
element k in permutation P = (p1 . . . pn) is sorted if pk = +k and unsorted otherwise.
We call P k-sorted if its first k� 1 elements are sorted, but if element k is unsorted. For
every (k� 1)-sorted permutation P, there exists a single reversal, called the k-sorting
reversal, that fixes the first k� 1 elements of P and moves element k to the k-th position.
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In the case when �k is already in the k-th position of P, the k-sorting reversal merely
flips �k around.

For example, in the sorting of the mouse X chromosome shown above, the 2-sorting
reversal transforms (+1 �7 +6 �10 +9 �8 +2 �11 �3 +5 +4) into (+1 �2 +8
�9 +10 �6 +7 �11 �3 +5 +4). In this case, an additional 2-sorting reversal flipping
�2 was needed to make element 2 sorted. The idea of GREEDYSORTING, then, is to
apply k-sorting reversals for increasing values of k. Here, |P| refers to the length of
permutation P.

GREEDYSORTING(P)
approxReversalDistance 0
for k 1 to |P|

if element k is not sorted
apply the k-sorting reversal to P
approxReversalDistance approxReversalDistance + 1
if the k-th element of P is �k

apply the k-sorting reversal to P
approxReversalDistance approxReversalDistance + 1

return approxReversalDistance

6A

In the case of the mouse X chromosome, GREEDYSORTING requires eleven reversals,
but we already know that this permutation can be sorted with seven reversals, which
causes us to wonder: how good of a heuristic is GREEDYSORTING?

EXERCISE BREAK: What is the largest number of reversals GREEDYSORTING

could ever require to sort a permutation of length n?

Consider the permutation (�6 +1 +2 +3 +4 +5). You can verify that the greedy
heuristic requires ten steps to sort this permutation, and yet it can be sorted using just
two reversals!

(�6 +1 +2 +3 +4 +5)
(�5 �4 �3 �2 �1 +6)
(+1 +2 +3 +4 +5 +6)

This example demonstrates that GREEDYSORTING provides a poor approximation for
the reversal distance.
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STOP and Think: Can you find a lower bound on drev(P)? For example, can you
show that the mouse permutation (+1 �7 +6 �10 +9 �8 +2 �11 �3 +5 +4)
cannot be sorted with fewer than seven reversals?

Breakpoints

What are breakpoints?

Consider the sorting by reversals shown in Figure 6.7. We would like to quantify how
each subsequent permutation is moving closer to the identity as we apply subsequent
reversals. For the first reversal, at the right endpoint of the inverted interval, it changes
the consecutive elements (�11 +13) into the much more desirable (+12 +13). Less
obvious is the work of the fourth reversal, which places �11 immediately left of �10
so that at the next step, the consecutive elements (�11 �10) can be part of an inverted
interval, creating the desirable consecutive elements (+10 +11).

BREAKPOINTS(P)
|+3 +4 +5 |�12 |�8 �7 �6 |+1 +2 |+10 |+9 |�11 |+13 8
|+3 +4 +5 |+11 |�9 |�10 |�2 �1 |+6 +7 +8 |+12 +13 7
+1 +2 |+10 |+9 |�11 |�5 �4 �3 |+6 +7 +8 |+12 +13 6
+1 +2 +3 +4 +5 |+11 |�9 |�10 |+6 +7 +8 |+12 +13 5
+1 +2 +3 +4 +5 |+9 |�11 �10 |+6 +7 +8 |+12 +13 4
+1 +2 +3 +4 +5 |+9 |�8 �7 �6 |+10 +11 +12 +13 3
+1 +2 +3 +4 +5 +6 +7 +8 |�9 |+10 +11 +12 +13 2
+1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 0

FIGURE 6.7 A sorting by reversals. The inverted interval of each reversal is shown in
red, while breakpoints in each permutation are marked by vertical blue segments.

The intuition that we are trying to build is that consecutive elements like (+12 +13)
are desirable because they appear in the same order as in the identity permutation.
However, consecutive elements like (�11 �10) are also desirable, since these elements
can be later inverted into the correct order, (+10 +11). The pairs (+12 +13) and (�11
�10) have something in common; the second element is equal to the first element plus
1. We therefore say that consecutive elements (pi pi+1) in permutation P = (p1 . . . pn)

form an adjacency if pi+1� pi is equal to 1. By definition, for any positive integer k < n,
both (k k + 1) and (�(k + 1) �k) are adjacencies. If pi+1 � pi is not equal to 1, then we
say that (pi pi+1) is a breakpoint.
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We can think about a breakpoint intuitively as a pair of consecutive elements that
are “out of order” compared to the identity permutation (+1 +2 . . .+n). For example,
the pair (+5 �12) is a breakpoint because +5 and -12 are not neighbors in the identity
permutation. Similarly, (�12 �8), (�6 +1), (+2 +10), (+9 �11), and (�11 +13) are
clearly out of order. But (+10 +9) is also a breakpoint (even though it is formed by
consecutive integers) because its signs are out of order compared to the identity permu-
tation.

STOP and Think: The permutation (�5 �4 �3 �2 �1) is clearly not the identity
permutation, but where are its breakpoints?

We will further represent the beginning and end of permutation P by adding 0 to the
left of the first element and n + 1 to the right of the last element,

(0 p1 . . . pn (n + 1)) .

As a result, there are n + 1 pairs of consecutive elements:

(0 p1), (p1 p2), (p2 p3), . . . , (pn�1 pn), (pn (n + 1)) .

We use ADJACENCIES(P) and BREAKPOINTS(P) to denote the number of adjacencies
and breakpoints of permutation P, respectively. Figure 6.7 illustrates how the number of
breakpoints changes during sorting by reversals (note that 0 and n + 1 are placeholders
and cannot be affected by a reversal).

Counting breakpoints

Because any pair of consecutive elements of a permutation form either a breakpoint or
adjacency, we have the following identity for any permutation P of length n:

ADJACENCIES(P) + BREAKPOINTS(P) = n + 1.

STOP and Think: A permutation on n elements may have at most n + 1 adjacen-
cies. How many permutations on n elements have exactly n + 1 adjacencies?

You can verify that the identity permutation (+1 +2 . . .+n) is the only permutation
for which all consecutive elements are adjacencies, meaning that it has no breakpoints.

307



C H A P T E R 6

Note also that the permutation (�n �(n� 1) . . .�2 �1) has adjacencies for every con-
secutive pair of elements except for the two breakpoints (0 �n) and (�1 (n + 1)).

EXERCISE BREAK: How many permutations of length n have exactly n � 1
adjacencies?

Number of Breakpoints Problem:
Find the number of breakpoints in a permutation.

Input: A permutation.
Output: The number of breakpoints in this permutation.

6B

STOP and Think: We defined a breakpoint between an arbitrary permutation
and the identity permutation. Generalize the notion of a breakpoint between two
arbitrary permutations, and design a linear-time algorithm for computing this
number.

Sorting by reversals as breakpoint elimination

The reversals in Figure 6.7 reduce the number of breakpoints from 8 to 0. Note that
the permutation becomes more and more “ordered” after every reversal as the number
of breakpoints reduces at each step. You can therefore think of sorting by reversals
as the process of breakpoint elimination — reducing the number of breakpoints in a
permutation P from BREAKPOINTS(P) to 0.

STOP and Think: What is the maximum number of breakpoints that can be
eliminated by a single reversal?

Consider the first reversal in Figure 6.7, which reduces the number of breakpoints from
8 to 7. On either side of the inverted interval, breakpoints and adjacencies certainly do
not change; for example, the breakpoint (0 +3) and the adjacency (+13 +14) remain
the same. Also note that every breakpoint within the inverted interval of a reversal
remains a breakpoint after the reversal. In other words, if (pi pi+1) formed a breakpoint
within the span of a reversal, i.e.,

pi+1 � pi 6= 1,
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then these consecutive elements will remain a breakpoint after the reversal changes
them into (�pi+1 �pi):

�pi � (�pi+1) = pi+1 � pi 6= 1 .

For example, there are five breakpoints within the span of the following reversal on
the permutation (0 +3 +4 +5 �12 �8 �7 �6 +1 +2 +10 +9 �11 +13 +14 15):

(�12 �8) (�6 +1) (+2 +10) (+10 +9) (+9 �11)

After the reversal, these breakpoints become the following five breakpoints:

(+11 �9) (�9 �10) (�10 �2) (�1 +6) (+8 +12)

Since all breakpoints inside and outside the span of a reversal remain breakpoints
after a reversal, the only breakpoints that could be eliminated by a reversal are the two
breakpoints located on the boundaries of the inverted interval. The breakpoints on the
boundaries of the first reversal in Figure 6.7 are (+5 �12) and (�11 +13); the reversal
converts them into a breakpoint (+5 +11) and an adjacency (+12 +13), thus reducing
the number of breakpoints by 1.

STOP and Think: Can the permutation (+3 +4 +5 �12 �8 �7 �6 +1 +2 +10
+9 �11 +13 +14), which has 8 breakpoints, be sorted with three reversals?

A reversal can eliminate at most two breakpoints, so two reversals can eliminate at most
four breakpoints, three reversals can eliminate at most six breakpoints, and so on. This
reasoning establishes the following theorem.

Breakpoint Theorem: drev(P) is greater than or equal to BREAKPOINTS(P)/2.

It would be nice if we could always find a reversal that eliminates two breakpoints from
a permutation, as this would imply a simple greedy algorithm for optimal sorting by
reversals. Unfortunately, this is not the case. You can verify that there is no reversal that
reduces the number of breakpoints in the permutation P =(+2 +1), which has three
breakpoints.

EXERCISE BREAK: How many permutations of length n have the property that
no reversal applied to P decreases BREAKPOINTS(P)?
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It turns out that every permutation of length n can be sorted using at most n + 1 re-
versals and that the permutation (+n +(n� 1) . . .+1) requires n + 1 reversals to sort.
Since this permutation has n + 1 breakpoints, there is a large gap between the lower
bound of (n + 1)/2 provided by the Breakpoint Theorem and the reversal distance.

EXERCISE BREAK: Prove that there exists a shortest sequence of reversals
sorting a permutation that never breaks a permutation at an adjacency.

You will soon see that the idea of breakpoints will help us return to our original aim of
testing the Random Breakage Model. For now, we would like to move from permuta-
tions, which can only model single chromosomes, to a more general multichromosomal
model. You may be surprised that we are moving to a seemingly more difficult model
before resolving the unichromosomal case, which is already difficult. However, it turns
out that our new multichromosomal model will be easier to analyze!

Rearrangements in Tumor Genomes

As we move toward a more robust model for genome comparison, we need to incorpo-
rate rearrangements that move genes from one chromosome to another. Indeed, with
the notable exception of the X chromosome, the genes from a single human chromo-
some usually have their counterparts distributed over many mouse chromosomes (and
vice-versa). We hope that there is a nagging voice in your head, wondering: How can a
genome rearrangement affect multiple chromosomes?

Although multichromosomal rearrangements have occurred during species evolu-
tion over millions of years, we can witness them during a much narrower time frame in
cancer cells, which exhibit many chromosomal aberrations. Some of these mutations
have no direct effect on tumor development, but many types of tumors display recur-
rent rearrangements that trigger tumor growth by disrupting genes or altering gene
regulation. By studying these rearrangements, we can identify genes that are important
for tumor growth, leading to improved cancer diagnostics and therapeutics.

Figure 6.8 presents a rearrangement involving human chromosomes 9 and 22 in
a rare form of cancer called chronic myeloid leukemia (CML). In this type of rear-
rangement, called a translocation, two intervals of DNA are excised from the end of
chromosomes 9 and 22 and then reattached on opposite chromosomes. One of the
rearranged chromosomes is called the Philadelphia chromosome. This chromosome
fuses together two genes called ABL and BCR that normally have nothing to do with
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each other. However, when joined on the Philadelphia chromosome, these two genes
create a single chimeric gene coding for the ABL-BCR fusion protein, which has been
implicated in the development of CML.

ABL 

BCR 

Chromosome 9 

Chromosome 22 

ABL-BCR 

Philadelphia
Chromosome 

FIGURE 6.8 The Philadelphia chromosome is formed by a translocation affecting chro-
mosomes 9 and 22. It fuses together the ABL and BCR genes, forming a chimeric gene
that can trigger CML.

Once scientists understood the root cause of CML, they started searching for a
compound inhibiting ABL-BCR, which resulted in the introduction of a drug called
Gleevec in 2001. Gleevec is a targeted therapy against CML that inhibits cancer cells
but does not affect normal cells and has shown great clinical results. However, since
it targets only the ABL-BCR fusion protein, Gleevec does not treat most other cancers.
Nevertheless, the introduction of Gleevec has bolstered researchers’ hopes that the
search for specific rearrangements in other forms of cancer may produce additional
targeted cancer therapies.

From Unichromosomal to Multichromosomal Genomes

Translocations, fusions, and fissions

To model translocations, we represent a multichromosomal genome with k chromo-
somes as a permutation that has been partitioned into k pieces. For example, the genome
(+1 +2 +3 +4 +5 +6)(+7 +8 +9 +10 +11) is made up of the two chromosomes (+1
+2 +3 +4 +5 +6) and (+7 +8 +9 +10 +11). A translocation exchanges segments of
different chromosomes, e.g., a translocation of the two chromosomes

(+1 +2 +3 +4 +5 +6) (+7 +8 +9 +10 +11)
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may result in the two chromosomes

(+1 +2 +3 +4 +9 +10 +11) (+7 +8 +5 +6) .

You can think about a translocation as first breaking each of the two chromosomes

(+1 +2 +3 +4 +5 +6) (+7 +8 +9 +10 +11)

into two parts,

(+1 +2 +3 +4) (+5 +6) (+7 +8) (+9 +10 +11) ,

and then gluing the resulting segments into two new chromosomes,

(+1 +2 +3 +4 +9 +10 +11) (+7 +8 +5 +6) .

Rearrangements in multichromosomal genomes are not limited to reversals and
translocations. They also include chromosome fusions, which merge two chromosomes
into a single chromosome, as well as fissions, which break a single chromosome into
two chromosomes. For example, the two chromosomes

(+1 +2 +3 +4 +5 +6) (+7 +8 +9 +10 +11)

can be fused into the single chromosome

(+1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11) .

A subsequent fission of this chromosome could result in the two chromosomes

(+1 +2 +3 +4) (+5 +6 +7 +8 +9 +10 +11) .

Five million years ago, shortly after the human and chimpanzee lineages split, a fusion
of two chromosomes (called 2A and 2B) in one of our ancestors created human chromo-
some 2 and reduced our chromosome count from 24 to 23.

STOP and Think: A priori, it could just as easily be the case that the human-
chimpanzee ancestor had an intact chromosome 2, and that a fission split these
two chromosomes into chimpanzee chromosomes 2A and 2B. How would you
choose between the two scenarios? Hint: gorillas and orangutans, like chim-
panzees, also have 24 chromosomes.
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From a genome to a graph

We will henceforth assume that all chromosomes in a genome are circular. This assump-
tion represents a slight distortion of biological reality, as mammalian chromosomes
are linear. However, circularizing a linear chromosome by joining its endpoints will
simplify the subsequent analysis without affecting our conclusions.

We now have a multichromosomal genomic model, along with four types of re-
arrangements (reversals, translocations, fusions, and fissions) that can transform one
genome into another. To model genomes with circular chromosomes, we will use a
genome graph. First represent each synteny block by a directed black edge indicating
its direction, and then link black edges corresponding to adjacent synteny blocks with a
colored undirected edge. Figure 6.9 shows each circular chromosome as an alternating
cycle of red and black edges. In this model, the human genome can be represented
using 280 human-mouse synteny blocks spread over 23 alternating cycles.

a c 

d 

b 
e 

f 

g 

h 

i 

j 

FIGURE 6.9 A genome with two circular chromosomes, (+a �b �c +d) and (+e +f
+g +h +i +j). Black directed edges represent synteny blocks, and red undirected
edges connect adjacent synteny blocks. A circular chromosome with n elements can
be written in 2n different ways; the chromosome on the left can be written as (+a �b
�c +d), (�b �c +d +a), (�c +d +a �b), (+d +a �b �c), (�a �d +c +b) (�d
+c +b �a), (+c +b �a �d), and (+b �a �d +c).

STOP and Think: Let P and Q be genomes consisting of linear chromosomes,
and let P⇤ and Q⇤ be the circularized versions of these genomes. Can you convert
a given series of reversals/translocations/fusions/fissions transforming P into Q
into a series of rearrangements transforming P⇤ into Q⇤? What about the reverse
operation — can you convert a series of rearrangements transforming P⇤ into Q⇤

into a series of rearrangements transforming P into Q?
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2-breaks

We now focus on one of the chromosomes in a multi-chromosomal genome and consider
a reversal transforming the circular chromosome P = (+a �b �c +d) into Q = (+a �b
�d +c). We can draw Q in a variety of ways, depending on how we choose to arrange
its black edges. Figure 6.10 shows two such equivalent representations.

a d 

c 

b 

a c 

d 

b 

FIGURE 6.10 Two equivalent drawings of the circular chromosome Q = (+a �b �d
+c).

Although the first drawing of Q in Figure 6.10 is its most natural representation,
we will use the second representation because its black edges are arranged around the
circle in exactly the same order as they appear in the natural representation of P = (+a
�b �c +d). As illustrated in Figure 6.11, keeping the black edges fixed allows us to
visualize the effect of the reversal. As you can see, the reversal deletes (“breaks”) two
red edges in P (connecting b to c and d to a) and replaces them with two new red edges
(connecting b to d and c to a).

Figure 6.12 illustrates a fission of P = (+a �b �c +d) into Q = (+a �b)(�c +d);
reversing this operation corresponds to a fusion of the two chromosomes of Q to yield
P. Both the fusion and the fission operations, like the reversal, correspond to deleting
two edges in one genome and replacing them with two new edges in the other genome.

A translocation involving two linear chromosomes can also be mimicked by circu-
larizing these chromosomes and then replacing two red edges with two different red
edges, as shown in Figure 6.13. We have therefore found a common theme uniting the
four different types of rearrangements. They all can be viewed as breaking two red
edges of the genome graph and replacing them with two new red edges on the same
four nodes. For this reason, we define the general operation on the genome graph in
which two red edges are replaced with two new red edges on the same four nodes as a
2-break.
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a c 

d 

b 

a c 

d 

b 

reversal 

FIGURE 6.11 A reversal transforms P = (+a �b �c +d) into Q = (+a �b �d +c).
We have arranged the black edges of Q so that they have the same orientation and
position as the black edges in the natural representation of P. The reversal can be
viewed as deleting the two red edges labeled by stars and replacing them with two new
red edges on the same four nodes.
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d 

b 

a c 

d 

b 
ÄZZPVU�

M\ZPVU�

FIGURE 6.12 A fission of the single chromosome P = (+a �b �c +d) into the
genome Q = (+a �b)(�c +d). The inverse operation is a fusion, transforming the
two chromosomes of Q into a single chromosome by deleting two red edges of Q and
replacing them with two other edges.

We would like to find a shortest sequence of 2-breaks transforming genome P into
genome Q, and we refer to the number of operations in a shortest sequence of 2-breaks
transforming P into Q as the 2-break distance between P and Q, denoted d(P, Q).

2-Break Distance Problem:
Find the 2-break distance between two genomes.

Input: Two genomes with circular chromosomes on the same synteny blocks.
Output: The 2-break distance between these genomes.
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FIGURE 6.13 A translocation of linear chromosomes (�a +b +c �d) and (+e +f
�g +h) transforms them into linear chromosomes (�a +f �g +h) and (+e +b
+c �d). This translocation can also be accomplished by first circularizing the chro-
mosomes (i.e., connecting the ends of each chromosome with a dashed red edge),
then applying a 2-break to the new chromosomes, and finally converting the resulting
circular chromosome into two linear chromosomes by removing the dashed red edges.

Breakpoint Graphs

To compute the 2-break distance, we will return to the notion of breakpoints to construct
a graph for comparing two genomes. Consider the genomes P = (+a �b �c +d) and
Q = (+a +c +b �d). Note that we have used red for the colored edges of P and blue
for the colored edges of Q. As before, we rearrange the black edges of Q so that they are
arranged exactly as in P (Figure 6.14, middle). If we superimpose the genome graphs of
P and Q, then we obtain the tri-colored breakpoint graph BREAKPOINTGRAPH(P, Q),
shown in Figure 6.14.
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BREAKPOINTGRAPH(P, Q) 
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CYCLES(P, Q) = 2 
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FIGURE 6.14 Constructing the breakpoint graph for the unichromosomal genomes P =
(+a �b �c + d) and Q = (+a + c + b �d). After rearranging the black edges of Q so
that they are arranged the same as in P, the breakpoint graph BREAKPOINTGRAPH(P,Q)
is formed by superimposing the graphs of P and Q. As shown on the right, there are
two alternating red-blue cycles in this breakpoint graph.

Note that the red and black edges in the breakpoint graph form P, and the blue and
black edges form Q. Moreover, the red and blue edges in the breakpoint graph form a
collection of red-blue alternating cycles.

STOP and Think: Prove that the red and blue edges in any breakpoint graph
form alternating cycles. Hint: How many red and blue edges meet at each node
of the breakpoint graph?

We denote the number of red-blue alternating cycles in BREAKPOINTGRAPH(P, Q) as
CYCLES(P, Q). For P = (+a �b �c +d) and Q = (+a +c +b �d), CYCLES(P, Q) = 2,
as shown on the right in Figure 6.16. In what follows, we will be focusing on the
red-blue alternating cycles in breakpoint graphs and often omit the black edges.

Although Figure 6.14 illustrates the construction of the breakpoint graph for single-
chromosomal genomes, the breakpoint graph can be constructed for genomes with
multiple chromosomes in exactly the same way (Figure 6.15).

STOP and Think: Given genome P, which genome Q maximizes CYCLES(P, Q)?

In the case that P and Q have the same number of synteny blocks, we denote the
number of their synteny blocks as BLOCKS(P, Q). As shown in Figure 6.16, when P
and Q are identical, their breakpoint graph consists of BLOCKS(P, Q) cycles of length
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BREAKPOINTGRAPH(P, Q) 
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f 
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b 

CYCLES(P, Q) = 3 
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f 

a 

b 

Q 

FIGURE 6.15 The construction of BREAKPOINTGRAPH(P,Q) for the unichromosomal
genome P = (+a +b +c +d +e +f) and the two-chromosome genome Q = (+a �c
�f �e)(+b �d). At the bottom, to illustrate the construction of the breakpoint graph,
we first rearrange the black edges of Q so that they are drawn the same as in P.

2, each containing one red and one blue edge. We refer to cycles of length 2 as trivial
cycles and the breakpoint graph formed by identical genomes as the trivial breakpoint
graph.

a c 

d 

b 

FIGURE 6.16 The trivial breakpoint graph BREAKPOINTGRAPH(P, P), formed by two
copies of the genome P = (+a �b �c +d). The breakpoint graph of any genome with
itself consists only of length 2 alternating cycles.

EXERCISE BREAK: Prove thatProve that CCYCLES((PP,, Q)) is smaller thanis smaller than BBLOCKS((PP,, Q))

unlessunless PP is equal tois equal to Q..
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You are likely wondering how the breakpoint graph is useful. We can view a 2-
break transforming P into P0 as an operation on BREAKPOINTGRAPH(P, Q) that yields
BREAKPOINTGRAPH(P0, Q) (Figure 6.17).

By extension, we can view a series of 2-breaks transforming P into Q as a series of
2-breaks transforming BREAKPOINTGRAPH(P, Q) into BREAKPOINTGRAPH(Q, Q), the
trivial breakpoint graph. Figure 6.18 illustrates a transformation of a breakpoint graph
with CYCLES(P, Q) = 2 into a trivial breakpoint graph with CYCLES(Q, Q) = 4 using
two 2-breaks.

a b 

d 

c 

a b 

d 

c 

FIGURE 6.17 A 2-break (indicated by stars) transforming genome P into P0 also trans-
forms BREAKPOINTGRAPH(P,Q) into BREAKPOINTGRAPH(P0,Q) for any genome Q. In
this example, P = (+a �b �c +d), P0 = (+a �b �c �d), and Q = (+a +c +b �d).

a b 

d 

c 

a b 

d 

c 

CYCLES(P, Q) = 2 CYCLES(Q, Q) = 4 

a b 

d 

c 

CYCLES(P’, Q) = 3 

P = (+a –b –c +d)  P’ = (+a –b –c –d)  P’’ = Q = (+a +c +b –d)  

FIGURE 6.18 Every 2-break transformation of genome P into Q corresponds to a transfor-
mation of BREAKPOINTGRAPH(P,Q) into BREAKPOINTGRAPH(Q,Q). In the example
shown, the number of red-blue cycles in the graph increases from CYCLES(P,Q) = 2
to CYCLES(Q,Q) = BLOCKS(Q,Q) = 4.

Since every transformation of P into Q transforms BREAKPOINTGRAPH(P, Q) into
the trivial breakpoint graph BREAKPOINTGRAPH(Q, Q), any sorting by 2-breaks in-
creases the number of red-blue cycles by

CYCLES(Q, Q)� CYCLES(P, Q) .
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STOP and Think: How much can each 2-break contribute to this increase?
In other words, if P0 is obtained from P by a 2-break, how much bigger can
CYCLES(P0, Q) be than CYCLES(P, Q)?

Computing the 2-Break Distance

The Breakpoint Theorem stated that a reversal applied to a linear chromosome P can
reduce BREAKPOINTS(P) by at most 2. We now prove that a 2-break applied to a
multichromosomal genome P can increase CYCLES(P, Q) by at most 1, i.e., for any
2-break transforming P into P0, and for any genome Q, CYCLES(P0, Q) cannot exceed
CYCLES(P, Q) + 1.

Cycle Theorem: For genomes P and Q, any 2-break applied to P can increase CYCLES(P, Q)

by at most 1.

Proof. Figure 6.19 presents three cases that illustrate how a 2-break applied to P can
affect the breakpoint graph. Each 2-break affects two red edges that either belong to the
same cycle or to two different cycles in BREAKPOINTGRAPH(P, Q). In the former case,
the 2-break either does not change CYCLES(P, Q), or it increases it by 1. In the latter
case, it decreases CYCLES(P, Q) by 1.

CYCLES(P, Q)
does not change 

CYCLES(P, Q)
increases by 1 

CYCLES(P, Q)
decreases by 1 

FIGURE 6.19 Three cases illustrating how a 2-break can affect the breakpoint graph.
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Although the preceding proof is short and intuitive, it is not a formal proof, but
rather an invitation to examine Figure 6.19. If you are interested in a more rigorous
mathematical argument, please read the next proof.

Proof. A 2-break adds two new red edges and thus forms at most 2 new cycles (con-
taining two new red edges) in BREAKPOINTGRAPH(P, Q). At the same time, it deletes
two red edges and thus deletes at least 1 old cycle (containing two old edges) from
BREAKPOINTGRAPH(P, Q). Thus, the number of red-blue cycles in the breakpoint
graph increases by at most 2� 1 = 1, implying that CYCLES(P, Q) increases by at most
1.

Recall that there are permutations for which no reversal reduces the number of
breakpoints, a fact that defeated our hopes for a greedy algorithm for sorting by rever-
sals that reduces the number of breakpoints at each step. In the case of 2-breaks (on
genomes with circular chromosomes), we now know that each 2-break can increase
CYCLES(P, Q) by at most 1. But is it always possible to find a 2-break that increases
CYCLES(P, Q) by 1? As the following theorem illustrates, the answer is yes.

2-Break Distance Theorem: The 2-break distance between genomes P and Q is equal to
BLOCKS(P, Q)� CYCLES(P, Q).

Proof. Recall that every sorting by 2-breaks must increase the number of alternating
cycles by CYCLES(Q, Q)�CYCLES(P, Q), which equals BLOCKS(P, Q)�CYCLES(P, Q)

because BLOCKS(P, Q) = CYCLES(Q, Q). The Cycle Theorem implies that each 2-break
increases the number of cycles in the breakpoint graph by at most 1. This immediately
implies in turn that d(P, Q) is at least BLOCKS(P, Q)� CYCLES(P, Q). If P is not equal
to Q, then there must be a non-trivial cycle in BREAKPOINTGRAPH(P, Q), i.e., a cycle
with more than two edges. As shown in Figure 6.19 (middle), any non-trivial cycle in
the breakpoint graph can be split into two cycles by a 2-break, implying that we can
always find a 2-break increasing the number of red-blue cycles by 1. Therefore, d(P, Q)

is equal to BLOCKS(P, Q)� CYCLES(P, Q).

Armed with this theorem, you should be ready to design an algorithm solving the
2-Break Distance Problem.

6C

CHARGING STATION (From Genomes to the Breakpoint Graph): You may
be wondering how the graph representation that we have been using for break-
point graphs could be transformed into an adjacency list. After all, we haven’t
even labeled the nodes of this graph! Check out this Charging Station to see how
to implement the genome graph.

PAGE
335
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We now know how to compute the 2-break distance, but we would also like to recon-
struct a collection of 2-breaks making up a shortest path between two genomes. This
problem is called 2-break sorting, which we leave to you as an exercise.

2-Break Sorting Problem:
Find a shortest transformation of one genome into another by 2-breaks.

Input: Two genomes with circular chromosomes on the same synteny blocks.
Output: The sequence of genomes resulting from applying a shortest se-
quence of 2-breaks transforming one genome into the other.

6D

CHARGING STATION (Solving the 2-Break Sorting Problem): The Break-
point Theorem guarantees that there is always a 2-break reducing the number of
red-blue cycles in the breakpoint graph by 1. However, it does not tell us how to
find such a 2-break. Check out this Charging Station to see how this can be done.

PAGE
338

Having proved the formula d(P, Q) = BLOCKS(P, Q)� CYCLES(P, Q) for the 2-break
distance between genomes with multiple circular chromosomes, we wonder whether
we can find an analogous formula for the reversal distance between single linear
chromosomes.

EXERCISE BREAK: Compute the 2-break distance between the circularized
human and mouse X chromosomes. Can you transform a series of 2-breaks for
these chromosomes into a series of reversals sorting the linear X chromosomes?

It turns out that a polynomial algorithm for sorting permutations by reversals does exist,
yielding an exact formula for the reversal distance! Although this algorithm also relies
on the notion of the breakpoint graph, it is unfortunately too complicated to present
here (see DETOUR: Sorting Linear Permutations by Reversals).PAGE 343

The breakpoint graph constructed on the 280 human-mouse synteny blocks con-
tains 35 alternating cycles, so that the 2-break distance between these genomes is
280� 35 = 245. Again, we don’t know exactly how many 2-breaks happened in the last
75 million years, but we are certain that there were at least 245 steps. Remember this
fact, since it will prove important in the next section.

322

http://rosalind.info/problems/6d


A R E T H E R E F R A G I L E R E G I O N S I N T H E H U M A N G E N O M E ?

Rearrangement Hotspots in the Human Genome

The Random Breakage Model meets the 2-Break Distance Theorem

You have probably anticipated from the beginning of the chapter that we would eventu-
ally argue against the Random Breakage Model. But it may still be unclear to you how
the 2-break distance could possibly be used to do so.

Rearrangement Hotspots Theorem: There are rearrangement hotspots in the human
genome.

Proof. Recall that if the Random Breakage Model is correct, then N reversals applied
to a linear chromosome will produce approximately 2N + 1 synteny blocks, since the
probability is very low that two nearby locations in the genome will be used as the
breakage point of more than one reversal. Similarly, N random 2-breaks applied to
circular chromosomes will produce 2N synteny blocks. Since there are 280 human-
mouse synteny blocks, there must have been approximately 280/2 = 140 2-breaks
on the evolutionary path between humans and mice. However, the 2-Break Distance
Theorem tells us that there were at least 245 2-breaks on this evolutionary path.

STOP and Think: Is 245 ⇡ 140?

Since 245 is much larger than 140, we have arrived at a contradiction, implying that
one of our assumptions is incorrect! But the only assumption we made in this proof
was “If the Random Breakage Model is correct. . . ” Thus, this assumption must have been
wrong.

This argument, which is not a mathematical proof, is nevertheless logically solid.
It offers an example of a proof by contradiction, in which we begin by assuming the
statement that we intend to disprove and then demonstrate how this assumption cannot
be true. As a result of the Rearrangement Hotspots Theorem, we conclude that there
was breakpoint reuse on the human-mouse evolutionary path. This breakpoint reuse
was extensive, as quantified by the large ratio between the actual 2-break distance
and what the 2-break distance would have been under the Random Breakage Model
(245/140 = 1.75).

Of course, our arguments need to be made statistically sound in order to ensure
that the discrepancy between the Random Breakage Model’s prediction and the 2-break
distance is significant. After all, even though genomes are large, there is still a small
chance that randomly chosen 2-breaks might occasionally break a genome more than
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once in a small interval. The necessary statistical analysis is beyond the scope of this
book.

The Fragile Breakage Model

But wait — what about Nadeau and Taylor’s argument in favor of the Random Breakage
Model? We certainly cannot ignore that the lengths of the human-mouse synteny blocks
resemble an exponential distribution.

STOP and Think: Can you find anything wrong with Nadeau and Taylor’s logic?

The Nadeau and Taylor argument in favor of the Random Breakage Model exemplifies
a classic logic fallacy. It is true that if breakage is random, then the histogram of synteny
block lengths should follow the exponential distribution. But it is a completely different
statement to conclude that just because synteny block lengths follow the exponential
distribution, breakage must have been random. The distribution of synteny block
lengths certainly provides support for the Random Breakage Model, but it does not
prove that it is correct.

Nevertheless, any alternative hypothesis we put forth for the Random Breakage
Model must account for the observation that the distribution of synteny block lengths
for the human and mouse genomes is approximately exponential.

STOP and Think: Can you propose a different model of chromosome evolution
that explains rearrangement hotspots and is consistent with the exponential
distribution of synteny block lengths?

The contradiction of the Random Breakage Model led to an alternative Fragile Breakage
Model of chromosome evolution, which was proposed in 2003. This model states that
every mammalian genome is a mosaic of long solid regions, which are rarely affected by
rearrangements, as well as short fragile regions that serve as rearrangement hotspots
and that account only for a small fraction of the genome. For humans and mice, these
fragile regions make up approximately 3% of the genome.

If we once again follow Occam’s razor, then the most reasonable way to allow for
exponentially distributed synteny block lengths is if the fragile regions themselves are
distributed randomly in the genome. Indeed, randomly selecting breakpoints within
randomly distributed fragile regions is not unlike randomly selecting the endpoints of a
rearrangement throughout the entire genome. Yet although we now have a model that

324



A R E T H E R E F R A G I L E R E G I O N S I N T H E H U M A N G E N O M E ?

fits our observations, many questions remain. For example, it is unclear where fragile
regions are located, or what causes genomic fragility in the first place.

STOP and Think: Consider the following statement: “The exponential distri-
bution of synteny block lengths and extensive breakpoint re-use imply that the
Fragile Breakage Model must be true.” Is this argument logically sound?

The point we are attempting to make by asking the preceding question is that we will
never be able to prove a scientific theory like the Fragile Breakage Model in the same
way that we have proved one of the mathematical theorems in this chapter. In fact,
many biological theories are based on arguments that a mathematician would view
as fallacious; the logical framework used in biology is quite different from that used
in mathematics. To take an historical example, neither Darwin nor anyone else has
ever proved that evolution by natural selection is the only — or even the most likely —
explanation for how life on Earth evolved!

We have already given many reasons to biology professors to send us to Biology 101
boot camp, but now we will probably be rounded up and thrown into the Gulag along-
side Intelligent Design proponents. However, the fact remains that not even Darwinism
is unassailable; in the 20th Century, this theory was revised into Neo-Darwinism, and
there is little doubt that it will continue to evolve.

Epilogue: Synteny Block Construction

Throughout our discussion of genome rearrangements, we assumed that we were given
synteny blocks in advance. In this section, we will describe one way of constructing
synteny blocks from genomic sequences.

Genomic dot-plots

Biologists sometimes visualize repeated k-mers within a string as a collection of points
in the plane; a point with coordinates (x, y) represents identical k-mers occurring at
positions x and y in the string. The top panels in Figure 6.20 present two of these
genomic dot plots. Of course, since DNA is double-stranded, we should expand the
notion of repeated k-mers to account for repeats occurring on the complementary strand.
In the bottom left panel of Figure 6.20, blue points (x, y) indicate that the k-mers starting
at positions x and y of the string are reverse complementary.
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Finding shared k-mers

Recalling that a synteny block is defined by many similar genes occurring in the same
order in two genomes, let’s first find the positions of all k-mers that are shared by the
human and mouse X chromosomes. If we choose k to be sufficiently large (e.g., k = 30),
then it is rather unlikely that shared k-mers represent spurious similarities. A more
likely explanation is that they come from related genes (or shared repeats) in the human
and mouse genomes.

Formally, we say that a k-mer is shared by two genomes if either the k-mer or its
reverse complement appears in each genome. Below are four pairs of 3-mers (shown
in bold) that are shared by AAACTCATC and TTTCAAATC; note that the second pair of
3-mers are reverse complements of each other.

0 0 4 6
AAACTCATC AAACTCATC AAACTCATC AAACTCATC

TTTCAAATC TTTCAAATC TTTCAAATC TTTCAAATC
4 0 2 6

We can further generalize the genomic dot plot to analyze the shared k-mer content of
two genomes. We color the point (x, y) red if the two genomes share a k-mer starting
at respective positions x and y; we color (x, y) blue if the two genomes have reverse
complementary k-mers at these starting positions. See Figure 6.20 (bottom right).

EXERCISE BREAK: Find all shared 2-mers of AAACTCATC and TTTCAAATC.

Shared k-mers Problem:
Given two strings, find all their shared k-mers.

Input: An integer k and two strings.
Output: All k-mers shared by these strings, in the form of ordered pairs (x, y)
corresponding to starting positions of these k-mers in the respective strings.

6E

EXERCISE BREAK: Answer the following questions regarding counting shared
k-mers.

1. Compute the expected number of 30-mers shared by two random strings,
each a billion nucleotides long.

2. How many shared 30-mers do the E. coli and S. enterica genomes share?
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FIGURE 6.20 A visualization of repeated k-mers within the string
AGCAGGTTATCTCCCTGT for k = 2 (top left) and k = 3 (top right). (Bottom
left) We add blue points to the plot shown in the upper left corner to indicate reverse
complementary k-mers. For example, CCT and AGG are reverse complementary 3-mers
in AGCAGGTTATCTTCCTGT. (Bottom right): Genomic dot-plot showing shared
3-mers between AGCAGGTTATCTACCTGT and AGCAGGAGATAAACCTGTACCTGT. The latter
sequence resulted from the former sequence by a reversal of the segment TTATCT.
Each point (x, y) corresponds to a k-mer shared by the two genomes. Red points
indicate identical shared k-mers, whereas blue points indicate reverse complementary
k-mers. Note that the dot-plot has six “noisy” blue points in the diagram: four in the
upper left corner, and two in the bottom right corner. You will also notice that red dots
can be connected into line segments with slope 1 and blue dots can be connected into
line segments with slope �1. The resulting three synteny blocks (AGCAGG, TTATCT,
and CCCTGT) correspond to three diagonals (each formed by four points) in the
dot-plot.
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The E. coli and S. enterica genomes are both about five million nucleotides long. It
can be shown that the expected number of shared 30-mers between two random 5
million nucleotide-long sequences is approximately 2 · (5 · 106)2�430 ⇡ 1/20, 000.

Yet solving the Shared k-mers Problem for E. coli and S. enterica yields over 200,000
pairs (x, y) corresponding to shared 30-mers. The surprisingly large number of shared
30-mers indicates that E. coli and S. enterica are close relatives that have retained many
similar genes inherited from their common ancestor. However, these genes may be
arranged in a different order in the two species: how can we infer synteny blocks from
these genomes’ shared k-mers? The genomic dot-plot plot for E. coli and S. enterica is
shown in Figure 6.21.
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FIGURE 6.21 Genomic dot-plot of E. coli (horizontal axis) and S. enterica (vertical
axis) for k = 30. Each point (x, y) corresponds to a k-mer shared by the two genomes.
Red points indicate identical shared k-mers, whereas blue points indicate reverse
complementary k-mers. Each axis is measured in kilobases (thousands of base pairs).

STOP and Think: Can you see the synteny blocks in the genomic dot-plot in
Figure 6.21?
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Constructing synteny blocks from shared k-mers

The genomic dot-plot in Figure 6.21 indicates five regions of similarity in the form of
points that clump together into approximately diagonal segments. These segments are
labeled by a, b, c, d, and e according to the order in which they appear in the E. coli
genome. We ignore smaller diagonals such as the short blue diagonal starting around
position 1.3 million in E. coli and around position 1.9 million in S. enterica. For example,
while a corresponds to a long diagonal segment of slope 1 that covers approximately the
first 3.5 million positions in both genomes, b corresponds to a shorter diagonal segment
of slope �1 that starts shortly before position 3.5 million in E. coli and shortly after
position 4 million in S. enterica. Although b appears small in Figure 6.21, don’t be fooled
by the scale of the figure; b is over 100,000 nucleotides long and contains nearly 100
genes.

The segments a, b, c, d, and e give us the synteny blocks that we have been looking
for. If we project these blocks onto the x- and y-axes, then the ordering of blocks on
each axis corresponds to the ordering of synteny blocks in the respective bacterium.
The ordering of synteny blocks in E. coli (plotted on the x-axis) is (+a +b +c +d +e),
and the ordering in S. enterica (y-axis) is (+a �c �d �b +e). Note that the blue letters
in S. enterica are assigned a negative sign because these blocks were constructed from
reverse complementary k-mers. Figure 6.21 also illustrates what the directions of blocks
are — they respectively correspond to diagonals in the dot-plot with slope 1 (blocks
with a “+” sign) and slope �1 (blocks with a “�” sign).

We have therefore represented the relationship between two bacterial genomes using
just five synteny blocks. Of course, this simplification required us to throw out some
points in the dot plot, corresponding to tiny regions of similarity that did not surpass a
threshold length in order to be considered synteny blocks.

We are now ready to construct the eleven human-mouse synteny blocks originally
presented in Figure 6.1 (page 294), but since the human and mouse X chromosomes
are rather long, we will instead provide you with all positions (x, y) where they share
significant similarities. Figure 6.22 (top left) presents the resulting genomic dot-plot
for the human and mouse X chromosomes, where each point represents a long similar
region rather than a shared k-mer. Our eyes immediately find eleven diagonals in this
plot corresponding to the human-mouse X chromosome synteny blocks — problem
solved! We state this problem as the Synteny Blocks Problem.
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FIGURE 6.22 From local similarities to synteny blocks. (Top left) The genomic dot-plot
for the human and mouse X chromosomes, representing all positions (x, y) where
they share significant similarities. In contrast with Figure 6.21, we do not distinguish
between red and blue dots. (Top right) Clusters (connected components) of points in the
genomic dot-plot are formed by constructing the synteny graph. (Bottom left) Rectified
clusters from the synteny graph transform each cluster into an exact diagonal of slope
±1. (Bottom right) Aggregated synteny blocks. Projection of the synteny blocks to the
x-and y-axes results in the arrangements of synteny blocks in the respective human and
mouse genomes (+1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11) and (+1 -7 +6 -10
+9 -8 +2 -11 -3 +5 +4).
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Synteny Blocks Problem:
Find diagonals in the genomic dot-plot.

Input: A set of points DotPlot in the plane.
Output: A set of diagonals in DotPlot representing synteny blocks.

Unfortunately, it remains unclear how to write a program to do what our eyes found to
be so easy; we hope you have already noticed that the Synteny Blocks Problem is not
a well-formulated computational problem. As we have mentioned, the diagonals in
Figure 6.22 (top left) are not perfect. Moreover, there are many gaps within diagonals
that cannot be seen by the human eye but will become apparent if we zoom into the
genome plot. It is therefore unclear what method the human brain is using to transform
the dots into the eleven diagonals in the genomic dot-plot.

STOP and Think: How can we translate the brain’s ability to construct the
diagonals that you see in Figure 6.22 (top left) into an algorithm that a computer
can understand?

Synteny blocks as connected components in graphs

The reason why you can easily see the synteny blocks in a genomic dot-plot is that
your brain is good at clustering nearby points in an image. To mimic this process with a
computer, we therefore need a precise notion of clustering. Given a set of points DotPlot
in the plane as well as a parameter maxDistance, we will construct the (undirected)
synteny graph SYNTENYGRAPH(DotPlot, maxDistance) by connecting two points in
DotPlot with an edge if the distance between them does not exceed maxDistance.

Every graph can be divided into disjoint connected subgraphs called connected
components. The connected components in SYNTENYGRAPH(DotPlot, maxDistance)
represent candidate synteny blocks between the two genomes (Figure 6.23). When we
construct the synteny graph for the human and mouse X chromosomes, we find a huge
number of small connected components (the exact number depends on our choice of the
maxDistance parameter). However, we will ignore these small connected components,
since they may represent spurious similarities. We thus introduce the parameter minSize
representing the minimum number of points in a connected component that we will
consider as forming a synteny block. Our goal is to return all connected components
having at least minSize nodes.
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FIGURE 6.23 The graph SYNTENYGRAPH(DotPlot, 4) constructed from the genomic
dot-plot of AGCAGGTTATCTCCCTGT and AGCAGGAGATAACCCTGT for k = 3. Note
that the three synteny blocks (all of which have four nodes) correspond to diagonals in
the genomic dot-plot. We ignore the two smaller, noisy synteny blocks.

SYNTENYBLOCKS(DotPlot, maxDistance, minSize)
construct SYNTENYGRAPH(DotPlot,maxDistance)
find the connected components in SYNTENYGRAPH(DotPlot,maxDistance)
output connected components containing at least minSize nodes as candidate

synteny blocks

As Figure 6.22 (top right) illustrates, SYNTENYBLOCKS has the tendency to partition a
single diagonal (as perceived by the human eye) into multiple diagonals due to gaps
that exceed the parameter maxDistance. However, this partitioning is not a problem,
since the broken diagonals can be combined later into a single (aggregated) synteny
block.

STOP and Think: We have defined synteny blocks as large connected compo-
nents in SYNTENYGRAPH(DotPlot, maxDistance) but have not described how to
determine where these synteny blocks are located in the original genomes. Using
Figure 6.22 as a hint, design an algorithm for finding this information.
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You should now be ready to solve the challenge problem and discover that the choice of
parameters is one of the dark secrets of bioinformatics research.

CHALLENGE PROBLEM: Construct the synteny blocks for the human andConstruct the synteny blocks for the human and
mouse X chromosomes and compute the 2-break distance between the circu-mouse X chromosomes and compute the 2-break distance between the circu-
larized human and mouse X chromosomes using the synteny blocks that yoularized human and mouse X chromosomes using the synteny blocks that you
constructed. How does this distance change depending on the parametersconstructed. How does this distance change depending on the parameters maxDis-maxDis-
tancetance andand minSizeminSize??

Open Problem: Can Rearrangements Shed Light on Bacterial Evolution?

Although there exist efficient algorithms for analyzing pairwise genome rearrangements,
constructing rearrangement scenarios for multiple genomes remains an open problem.
For example, we now know how to find a most parsimonious rearrangement scenario
transforming the mouse X chromosome into the human X chromosome. However,
the problem of finding a most parsimonious rearrangement scenario for the human,
mouse, and rat X chromosomes — let alone for their entire genomes — is a more
difficult problem. The difficulties further amplify when we attempt to reconstruct a
rearrangement history for dozens of mammalian genomes. To address this challenge,
we start from the simpler (but still unsolved) case of bacterial genomes.

Let Tree be a tree (i.e., a connected acyclic undirected graph) with nodes labeled by
some genomes. In the case of bacterial genomes, we assume that every node (genome)
is labeled by a circular permutation on n elements. Given an edge e connecting nodes v
and w in Tree, we define DISTANCE(v, w) as the 2-break distance between genomes v
and w. The tree distance DISTANCE(Tree) is the sum

Â
all edges (v,w) in Tree

DISTANCE(v, w).

Given a set of genomes P1, . . . , Pn and an evolutionary tree Tree with n leaves labeled
by P1, . . . , Pn, the Ancestral Genome Reconstruction Problem attempts to reconstruct
genomes at the internal nodes of the tree such that DISTANCE(Tree) is minimized across
all possible reconstructions of genomes at internal nodes.
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Ancestral Genome Reconstruction Problem:
Given a tree with leaves labeled by genomes, reconstruct ancestral genomes that minimize
the tree distance.

Input: A tree Tree with each leaf labeled by a genome.
Output: Genomes AncestralGenomes assigned to the internal nodes of Tree
such that DISTANCE(Tree) is minimized across all possible choices of Ances-
tralGenomes.

In the case when Tree is not given, we need to infer it from the genomes.

Multiple Genome Rearrangement Problem:
Given a set of genomes, reconstruct a tree with leaves labeled by these genomes and
minimum tree distance.

Input: A set of genomes.
Output: A tree Tree with leaves labeled by these genomes and internal nodes
labeled by (unknown) genomes AncestralGenomes such that DISTANCE(Tree)
is minimal among all possible choices of Tree and AncestralGenomes.

Although many heuristics have been proposed for the Multiple Genome Rearrangement
Problem, they have mainly been applied to analyze mammalian evolution. However,
there have been hardly any applications of the Multiple Genome Rearrangement Prob-
lem for analyzing bacterial evolution. The fact that bacterial genomes are approximately
1,000 times smaller than mammalian genomes does not make this problem 1,000 times
easier. In fact, there are unique challenges and opportunities in bacterial evolutionary
research.

Consider 100 genomes from three closely related bacterial genera, Salmonella, Shigella,
and Escherichia, whose various species are responsible for dysentery, typhoid fever, and
a variety of foodborne illnesses. After you construct synteny blocks shared by all these
genomes, you will see that there are relatively few (usually fewer than 10) rearrange-
ments between every pair of genomes. However, solving the Multiple Genome Rear-
rangement Problem even in the case of closely related genomes presents a formidable
challenge, and nobody has been able to construct a rearrangement scenario for more
than a couple dozen — let alone 100! — species yet.
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After you solve this puzzle, you will be able to address the question of whether there
are fragile regions in bacterial genomes. Answering this question for a pair of bacterial
genomes, like we did for the human and mouse genomes, may not be possible because
there are typically fewer than 10 rearrangements between them. But answering this
question for 100 bacterial genomes may be possible if we witness the same breakage
occurring independently on many branches of the evolutionary tree. However, you will
need to develop algorithms to analyze fragile regions in multiple (rather than pairwise)
genomes.

After you construct the evolutionary tree, you will also be in a position to analyze
the question of what triggers rearrangements. While many authors have discussed the
causes of fragility, this question remains open, with no shortage of hypotheses. Many
rearrangements are flanked by matching duplications, a pair of long similar regions
located within a pair of breakpoint regions corresponding to a rearrangement event.
However, it remains unclear what triggers rearrangements in bacteria; can you answer
this question?

Charging Stations

From genomes to the breakpoint graph

Our goal is to count the number of cycles in the breakpoint graph and therefore solve
the 2-Break Distance Problem. First, however, we will need to obtain a convenient graph
representation of genomes. In the main text, we represented a circular chromosome
by converting each synteny block into a directed edge, and then connected adjacent
synteny blocks in the chromosome with red edges. Although this provided us with a
way of visualizing genomes, it is not immediately clear how to represent this graph
with an adjacency list.

Given a genome P, we will represent its synteny blocks not as letters but as integers
from 1 to n = |P|. For example, (+a �b �c +d) will be represented as (+1 �2 �3 +4)
(Figure 6.24 (left)). Then, we will convert the directed black edges of P into undirected
edges as follows. Given a directed edge labeled by integer x, we assign the node at
the “head” of this edge as xh and the node at the “tail” of this edge as xt. For example,
we replace the directed edge labeled “2” in Figure 6.24 (left) with an undirected edge
connecting nodes 2t and 2h (Figure 6.24 (middle)). This results in the cyclic sequence of
nodes (1t, 1h, 2h, 2t, 3h, 3t, 4t, 4h). Finally, to simplify analysis of this graph even further,
instead of using xh and xt to denote the head and tail of synteny block x, we will
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use the integers 2x and 2x� 1, respectively (Figure 6.24 (right)). With this encoding,
the original genome (+1 �2 �3 +4) is transformed into the cyclic sequence of nodes
(1, 2, 4, 3, 6, 5, 7, 8).

1 3 

4 

2 2h 2t 

1h 

1t 

4t 

3t 

4h 

3h 

4 3 

2 

1 

7 

5 

8 

6 

FIGURE 6.24 (Left) The circular chromosome (+a �b �c +d) can be represented as
(+1 �2 �3 +4) using integers. (Middle) Representing this chromosome by replacing
the black directed edges with undirected edges connecting “heads” and “tails” of each
synteny block. (Right) Encoding head and tail nodes as integers. 1t and 1h are converted
into 1 and 2; 2t and 2h are converted into 3 and 4; and so on. The original chromosome
has been converted into the alternating cycle (1, 2, 4, 3, 6, 5, 7, 8).

STOP and Think: Is the transformation illustrated in Figure 6.24 invertible? In
other words, if we were to give you a cyclic sequence of nodes labeled from 1 to
2n, could you reconstruct the chromosome with n synteny blocks from which it
derives?

The following pseudocode bypasses the intermediate step in Figure 6.24 (middle) of
assigning “head” and “tail” nodes in order to transform a single circular chromosome
Chromosome = (Chromosome1, . . . , Chromosomen) into a cycle represented as a sequence
of integers Nodes = (Nodes1, . . . , Nodes2n).

6F

CHROMOSOMETOCYCLE(Chromosome)
for j 1 to |Chromosome|

i Chromosomej

if i > 0
Node2j�1  2i� 1
Node2j  2i

else
Node2j�1  �2i
Node2j  �2i� 1

return Nodes
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This process is in fact invertible, as described by the following pseudocode.

CYCLETOCHROMOSOME(Nodes)
for j 1 to |Nodes|/2

if Node2j�1 < Node2j

Chromosomej  Node2j
�

2
else

Chromosomej  �Node2j�1
�

2

return Chromosome

6G

CHROMOSOMETOCYCLE generates the sequence of nodes of a chromosome, but it
does not explicitly add the edges. Any genome P with n synteny blocks will have the
black undirected edges BLACKEDGES(P) = (1, 2), (3, 4), . . ., (2n� 1, 2n).

We now define COLOREDEDGES(P) as the set of colored edges in the graph of P.
For the example in Figure 6.24, the set COLOREDEDGES(P) contains the edges (2, 4),
(3, 6), (5, 7), and (8, 1).

The following algorithm constructs COLOREDEDGES(P) for a genome P. In this
pseudocode, we will assume that an n-element array (a1, . . . , an) has an invisible (n+ 1)-
th element that is equal to its first element, i.e., an+1 = a1.

COLOREDEDGES(P)
Edges an empty set
for each chromosome Chromosome in P

Nodes CHROMOSOMETOCYCLE(Chromosome)
for j 1 to |Chromosome|

add the edge (Nodes2j,Nodes2j+1) to Edges

return Edges

6H

The colored edges in the breakpoint graph of P and Q are given by COLOREDEDGES(P)
together with COLOREDEDGES(Q). Note that some edges in these two sets may connect
the same two nodes, which results in trivial cycles.

Although we are now ready to solve the 2-Break Distance Problem, we will later
find it helpful to implement a function converting a genome graph back into a genome.
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GRAPHTOGENOME(GenomeGraph)
P an empty set of chromosomes
for each cycle Nodes in GenomeGraph

Chromosome CYCLETOCHROMOSOME(Nodes)
add Chromosome to P

return P

6I

Solving the 2-Break Sorting Problem

Note: This Charging Station uses some notation from CHARGING STATION: From
PAGE

335
Genomes to the Breakpoint Graph.

Figure 6.25 (top) illustrates how a 2-break replaces colored edges (1, 6) and (3, 8)
in a genome graph with two new colored edges (1, 3) and (6, 8). We will denote this
operation as 2-BREAK(1, 6, 3, 8). Note that the order of the nodes in this function matter,
since the operation 2-BREAK(1, 6, 8, 3) would represent a different 2-break that replaces
(1, 6) and (3, 8) with (1, 8) and (6, 3) (Figure 6.25 (bottom)).

2-BREAK(1,6,3,8) 

4 3 
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8 

8 
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8 
3 
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5 6 
1 

2 

4 

2-BREAK(1,6,8,3) 
 

FIGURE 6.25 Operations 2-BREAK(1, 6, 3, 8) (top) and 2-BREAK(1, 6, 8, 3) (bottom) on
the genome (+1 �2 �3 +4) from Figure 6.24.
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The following pseudocode describes how 2-BREAK(i, i0, j, j0) transforms a genome
graph.

2-BREAKONGENOMEGRAPH(GenomeGraph, i, i’, j, j’)
remove colored edges (i, i’) and (j, j’) from GenomeGraph
add colored edges (i, j) and (i’, j’) to GenomeGraph
return GenomeGraph

6J

We can extend this pseudocode to a 2-break defined on genome P.

2-BREAKONGENOME(P, i, i’, j, j’)
GenomeGraph BLACKEDGES(P) and COLOREDEDGES(P)
GenomeGraph 2-BREAKONGENOMEGRAPH(GenomeGraph, i, i’, j, j’)
P GRAPHTOGENOME(GenomeGraph)
return P

6K

We are now ready to find a series of intermediate genomes in a shortest transformation
of P into Q by 2-breaks. The idea of our algorithm is to find a 2-break that will increase
the number of red-blue cycles in the breakpoint graph by 1. To do so, as illustrated in
Figure 6.26, we select an arbitrary blue edge in a non-trivial alternating red-blue cycle
and perform the 2-break on the two red edges flanking this blue edge in order to split
the red-blue cycle into two cycles (at least one of which is trivial).

SHORTESTREARRANGEMENTSCENARIO(P, Q)
output P
RedEdges COLOREDEDGES(P)
BlueEdges COLOREDEDGES(Q)

BreakpointGraph the graph formed by RedEdges and BlueEdges
while BreakpointGraph has a non-trivial cycle Cycle

(j, i’) an arbitrary edge from BlueEdges in a nontrivial red-blue cycle
(i, j) an edge from RedEdges originating at node j
(i’, j’) an edge from RedEdges originating at node i’
RedEdges RedEdges with edges (i, j) and (i’, j’) removed
RedEdges RedEdges with edges (j, i’) and (j’, i) added
BreakpointGraph the graph formed by RedEdges and BlueEdges
P 2-BREAKONGENOME(P, i, i’, j, j’)
output P
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FIGURE 6.26 A shortest 2-break transformation (from left to right) of the breakpoint
graph of P = (+a �b �c +d) and Q = (+a +b �d �c). The arbitrary blue edge
selected by SHORTESTREARRANGEMENTSCENARIO at each step is shown in bold, and
the red edges on either side of it are dashed (with stars indicating 2-breaks).

Detours

Why is the gene content of mammalian X chromosomes so conserved?

While mammalian X chromosomes are enriched in genes related to sexual reproduction,
most of the approximately 1,000 genes on the X chromosome have nothing to do with
gender. Ideally, they should be expressed (i.e., transcribed and eventually translated)
in roughly the same quantities in females and males. But since females have two X
chromosomes and males have only one, it would seem that all the genes on the X
chromosome should have twice the expression level in females. This imbalance would
lead to a problem in the complex cellular system of checks and balances underlying
gene expression.

The need to balance gene expression in males and females led to the evolution of
dosage compensation, or the inactivation of one X chromosome in females to equalize
gene expression between the sexes. Because of dosage compensation, the gene content
of the X chromosome is highly conserved between mammalian species because if a gene
jumps off the X chromosome, then its expression may double, thus creating a genetic
imbalance.

Discovery of genome rearrangements

After Sturtevant discovered genome rearrangements in Drosophila in 1921, another
breakthrough occurred with the discovery that the salivary glands of Drosophila contain
polytene cells. In normal cellular division, each daughter cell receives one copy of the
genome. However, in the nuclei of polytene cells, DNA replication occurs repeatedly in
the absence of cell division. The resulting chromosomes then knit themselves together
into much larger “superchromosomes” called polytene chromosomes.
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Polytene chromosomes serve a practical purpose for the fruit fly, which uses the
extra DNA to boost the production of gene transcripts, producing lots of sticky saliva.
But the human value of polytene chromosomes is perhaps greater. When Sturtevant
and his collaborator, Theodosius Dobzhansky, looked at polytene chromosomes under a
microscope, they were able to witness the work of rearrangements firsthand in tangled
mutant chromosomes. In 1938, Sturtevant and Dobzhansky published a milestone
paper with an evolutionary tree presenting a rearrangement scenario with seventeen
reversals for various species of Drosophila, the first evolutionary tree in history to be
constructed based on molecular data.

The exponential distribution

A Bernoulli trial is a random experiment with two possible outcomes, “success” (hav-
ing probability p) and “failure” (having probability 1� p). The geometric distribution
is the probability distribution underlying the random variable X representing the
number of Bernoulli trials needed to obtain the first success:

Pr(X = k) = (1� p)k�1 p.

A Poisson process is a continuous-time probabilistic process counting the number
of events in a given time interval, if we assume that the events occur independently
and at a constant rate. For example, the Poisson process offers a good model of time
points for passengers arriving to a large train station. If we assume that the number of
passengers arriving during a very small time interval e is l · e (where l is a constant),
then we are interested in the probability F(X) that nobody will arrive to the station
during a time interval X. The exponential distribution describes the time between
events in a Poisson process.

STOP and Think: Do you see any similarities between the Poisson process and
the Bernoulli trials or between the exponential and geometric distributions?

The exponential distribution is merely the continuous analogue of the geometric dis-
tribution. More precisely, the Poisson process is characterized by a rate parameter l,
such that the number of events k in the time interval of duration e follows the Poisson
probability distribution:

e�l·e(l · e)k
.

k!
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The probability density function of the exponential distribution is le�l·X (compare
with the geometric distribution shown in Figure 6.27).
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FIGURE 6.27 The probability density functions of the geometric (left) and exponential
(right) distributions, each provided for three different parameter values.

Bill Gates and David X. Cohen flip pancakes

Before biologists faced genome rearrangement problems, mathematicians posed the
Pancake Flipping Problem, arising from the following hypothetical waiter’s conun-
drum.

The chef in our place is sloppy, and when he prepares a stack of pancakes they come
out all different sizes. Therefore, when I deliver them to a customer, on the way to a
table I rearrange them (so that the smallest winds up on top, and so on, down to
the largest at the bottom) by grabbing several from the top and flipping them over,
repeating this (varying the number I flip) as many times as necessary. If there are
n pancakes, what is the maximum number of flips that I will ever have to use to
rearrange them?

Formally, a prefix reversal is a reversal that flips a prefix, or initial interval, of a
permutation. The Pancake Flipping Problem corresponds to sorting unsigned permuta-
tions by prefix reversals. For example, the series of prefix reversals shown below ignores
signs and represents the sorting of the unsigned permutation, (1 7 6 10 9 8 2 11 3 5 4),
into the identity unsigned permutation, (1 2 3 4 5 6 7 8 9 10 11). The inverted interval
is shown in red, and sorted intervals at the end of the permutation are shown in blue.
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( 1 7 6 10 9 8 2 11 3 5 4 )
(11 2 8 9 10 6 7 1 3 5 4 )
( 4 5 3 1 7 6 10 9 8 2 11)
(10 6 7 1 3 5 4 9 8 2 11)
( 2 8 9 4 5 3 1 7 6 10 11)
( 9 8 2 4 5 3 1 7 6 10 11)
( 6 7 1 3 5 4 2 8 9 10 11)
( 7 6 1 3 5 4 2 8 9 10 11)
( 2 4 5 3 1 6 7 8 9 10 11)
( 5 4 2 3 1 6 7 8 9 10 11)
( 1 3 2 4 5 6 7 8 9 10 11)
( 3 1 2 4 5 6 7 8 9 10 11)
( 2 1 3 4 5 6 7 8 9 10 11)
( 1 2 3 4 5 6 7 8 9 10 11)

When we search for a shortest series of prefix reversals sorting a signed permutation,
the problem is called the Burnt Pancake Flipping Problem (each pancake is “burnt”
on one side, giving it two possible orientations).

STOP and Think: Prove that every unsigned permutation of length n can be
sorted using at most 2 · (n� 1) prefix reversals. Prove that every signed permuta-
tion of length n can be sorted using at most 3 · (n� 1) + 1 prefix reversals.

In the mid-1970s, Bill Gates, an undergraduate student at Harvard, and Christos Pa-
padimitriou, Gates’s professor, made the first attempt to solve the Pancake Flipping
Problem and proved that any permutation of length n can be sorted with at most
5/3 · (n + 1) prefix reversals, a result that would not be improved for three decades.
David X. Cohen worked on the Burnt Pancake Flipping Problem at Berkeley before he
left computer science to become a writer for The Simpsons and eventually producer of
Futurama. Along with Manuel Blum, he demonstrated that the Burnt Pancake Flipping
Problem can be solved with at most 2 · (n� 1) prefix reversals.

Sorting linear permutations by reversals

In the main text, we defined the breakpoint graph for circular chromosomes, but this
structure can easily be extended to linear chromosomes. Figure 6.28 depicts the human
and the mouse X chromosomes as alternating red-black and blue-black paths (first
and second panels). These two paths are superimposed in the third panel to form the
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breakpoint graph, which has five alternating red-blue cycles.

STOP and Think: Prove the following analogue of the Cycle Theorem for per-
mutations: Given permutations P and Q, any reversal applied to P can increase
CYCLES(P, Q) by at most 1.

1 2 3 4 5 6 7 8 9 10 11 

1 2 3 4 5 6 7 8 9 10 11 

1 2 3 4 5 6 7 8 9 10 11 

FIGURE 6.28 (1st panel) An alternating red-black path representing the human X chro-
mosome (+1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11). (2nd panel) An alternating
blue-black path representing the mouse X chromosome (+1 �7 +6 �10 +9 �8 +2
�11 �3 +5 +4). (3rd panel) The breakpoint graph of the mouse and human X chro-
mosomes is obtained by superimposing red-black and blue-black paths from the first
two panels. (4th panel) To highlight the five alternating red-blue cycles in the breakpoint
graph, black edges are removed.

Whereas the number of trivial cycles is equal to BLOCKS(Q, Q) in the trivial breakpoint
graph of a circular permutation, the trivial breakpoint graph of a linear permutation
has BLOCKS(Q, Q) + 1 trivial cycles. Since the Cycle Theorem holds for linear per-
mutations, perhaps the reversal distance drev(P, Q) is equal to BLOCKS(P, Q) + 1�
CYCLES(P, Q) for linear chromosomes? After all, for the human and mouse X chromo-
somes, BLOCKS(P, Q) + 1� CYCLES(P, Q) is equal to 11 + 1� 5 = 7, which we already
know to be the reversal distance between the human and mouse X chromosomes.
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STOP and Think: Can you modify the proof of the 2-Break Distance Theorem
to prove that drev(P, Q) = BLOCKS(P, Q) + 1� CYCLES(P, Q) for linear permu-
tations P and Q?

You can verify that if P = (+2 +1) and Q = (+1 +2), then drev(P, Q) 6= BLOCKS(P, Q)+

1� CYCLES(P, Q). This makes it unlikely that we will be able to develop a simple algo-
rithm for the computation of reversal distance.

However, the lower bound drev(P, Q) � BLOCKS(P, Q) + 1 � CYCLES(P, Q) ap-
proximates the reversal distance between linear permutations extremely well. This
intriguing performance raised the question of whether this bound is close to an exact
formula. In 1999, Hannenhalli and Pevzner found this formula by defining two spe-
cial types of breakpoint graph structures called “hurdles” and “fortresses”. Denoting
the number of hurdles and fortresses in BREAKPOINTGRAPH(P, Q) by HURDLES(P, Q)

and FORTRESSES(P, Q), respectively, they proved that the reversal distance drev(P, Q)

is given by

BLOCKS(P, Q) + 1� CYCLES(P, Q) + HURDLES(P, Q) + FORTRESSES(P, Q).

Using this formula, they developed a polynomial algorithm for computing drev(P, Q).
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Bibliography Notes

Alfred Sturtevant was the first to discover rearrangements while comparing gene
orders in fruit flies (Sturtevant, 1921). Together with Theodosius Dobzhansky, Sturte-
vant pioneered the analysis of genome rearrangements, publishing a milestone paper
that presented a rearrangement scenario for many fruit fly species (Sturtevant and
Dobzhansky, 1936). The Random Breakage Model was proposed by Ohno, 1973, further
developed by Nadeau and Taylor, 1984, and refuted by Pevzner and Tesler, 2003b.

The notion of the breakpoint graph was proposed by Bafna and Pevzner, 1996.
The polynomial algorithm for sorting by reversals was developed by Hannenhalli and
Pevzner, 1999. The synteny block construction algorithm presented in this chapter
was described by Pevzner and Tesler, 2003a. The 2-break operation was introduced in
Yancopoulos, Attie, and Friedberg, 2005 under the name of “double cut and join”.

The first algorithmic analysis of the Pancake Flipping problem was described by
Gates and Papadimitriou, 1979. The first algorithmic analysis of the Burnt Pancake
Flipping problem was described by Cohen and Blum, 1995.

The Multiple Genome Rearrangement problem was addressed by Ma et al., 2008
and Alekseyev and Pevzner, 2009. Zhao and Bourque, 2009 observed that matching
duplications may trigger genome rearrangements.

346



A R E T H E R E F R A G I L E R E G I O N S I N T H E H U M A N G E N O M E ?

347





Bibliography

Alekseyev, M. A. and P. A. Pevzner (2009). “Breakpoint graphs and ancestral genome
reconstructions”. Genome Research Vol. 19: 943–957.

Bafna, V. and P. A. Pevzner (1996). “Genome Rearrangements and Sorting by Reversals”.
SIAM Journal on Computing Vol. 25: 272–289.

Butler, J., I MacCallum, M. Kleber, I. A. Shlyakhter, M. Belmonte, E. S. Lander, C.
Nusbaum, and D. B. Jaffe (2008). “ALLPATHS: de novo assembly of whole-genome
shotgun microreads.” Genome Research Vol. 18: 810–820.

Cohen, D. S. and M. Blum (1995). “On the Problem of Sorting Burnt Pancakes”. Discrete
Applied Mathematics Vol. 61: 105–120.

Conti, E., T. Stachelhaus, M. A. Marahiel, and P. Brick (1997). “Structural basis for the
activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S”. The
EMBO Journal Vol. 16: 4174–4183.

Conti, E., N. P. Franks, and P. Brick (1996). “Crystal structure of firefly luciferase throws
light on a superfamily of adenylate-forming enzymes”. Structure Vol. 4: 287–298.

Cristianini, N. and M. W. Hahn (2006). Introduction to Computational Genomics: A Case
Studies Approach. Cambridge University Press.

de Bruijn, N. (1946). “A Combinatorial Problem”. In: Proceedings of the Section of Sciences,
Koninklijke Akademie van Wetenschappen te Amsterdam. Vol. 49: 758–764.

Doolittle, R. F., M. W. Hunkapiller, L. E. Hood, S. G. Devare, K. C. Robbins, S. A.
Aaronson, and H. N. Antoniades (1983). “Simian sarcoma virus onc gene, v-sis, is
derived from the gene (or genes) encoding a platelet-derived growth factor”. Science
Vol. 221: 275–277.

349



Drmanac, R., I. Labat, I. Brukner, and R. Crkvenjakov (1989). “Sequencing of megabase
plus DNA by hybridization: Theory of the method”. Genomics Vol. 4: 114–128.

Euler, L. (1758). “Solutio Problematis ad Geometriam Situs Pertinentis”. Novi Commen-
tarii Academiae Scientarium Imperialis Petropolitanque, 9–28.

Gao, F. and C.-T. Zhang (2008). “Ori-Finder: A web-based system for finding oriCs in
unannotated bacterial genomes”. BMC Bioinformatics Vol. 9: 79.

Gardner, M. (1974). “Mathematical Games”. Scientific American Vol. 230: 120–125.

Gates, W. H. and C. H. Papadimitriou (1979). “Bounds for sorting by prefix reversal”.
Discrete Mathematics Vol. 27: 47–57.

Geman, S. and D. Geman (1984). “Stochastic Relaxation, Gibbs Distributions, and the
Bayesian Restoration of Images”. IEEE Transactions on Pattern Analysis and Machine
Intelligence Vol. PAMI-6: 721–741.

Good, I. J. (1946). “Normal Recurring Decimals”. Journal of the London Mathematical
Society Vol. 21: 167–169.

Grigoriev, A. (1998). “Analyzing genomes with cumulative skew diagrams”. Nucleic
Acids Research Vol. 26: 2286–2290.

Grigoriev, A. (2011). “How do replication and transcription change genomes?” In:
Bioinformatics for Biologists. Ed. by P. A. Pevzner and R. Shamir. Cambridge University
Press, 111–125.

Guibas, L. and A. Odlyzko (1981). “String overlaps, pattern matching, and nontransitive
games”. Journal of Combinatorial Theory, Series A Vol. 30: 183 –208.

Hannenhalli, S. and P. A. Pevzner (1999). “Transforming Cabbage into Turnip: Polyno-
mial Algorithm for Sorting Signed Permutations by Reversals”. Journal of the ACM
Vol. 46: 1–27.

Harmer, S. L., J. B. Hogenesch, M. Straume, H. S. Chang, B. Han, T. Zhu, X. Wang,
J. A. Kreps, and S. A. Kay (2000). “Orchestrated transcription of key pathways in
Arabidopsis by the circadian clock”. Science Vol. 290: 2110–2113.

Hertz, G. Z. and G. D. Stormo (1999). “Identifying DNA and protein patterns with
statistically significant alignments of multiple sequences.” Bioinformatics Vol. 15:
563–577.

350



Idury, R. M. and M. S. Waterman (1995). “A New Algorithm for DNA Sequence Assem-
bly.” Journal of Computational Biology Vol. 2: 291–306.

Ivics, Z., P. Hackett, R. Plasterk, and Z. Izsvák (1997). “Molecular reconstruction of
Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human
cells”. Cell Vol. 91: 501–510.

Konopka, R. J. and S. Benzer (1971). “Clock mutants of Drosophila melanogaster”.
Proceedings of the National Academy of Sciences of the United States of America Vol. 68:
2112–2116.

Lawrence, C. E., S. F. Altschul, M. S. Boguski, J. S. Liu, A. F. Neuwald, and J. C. Wootton
(1993). “Detecting subtle sequence signals: a Gibbs sampling strategy for multiple
alignment”. Science Vol. 262: 208–214.

Levenshtein, V. I. (1966). “Binary codes capable of correcting deletions, insertions, and
reversals”. Soviet Physics Doklady Vol. 10: 707–710.

Liachko, I., R. A. Youngblood, U. Keich, and M. J. Dunham (2013). “High-resolution
mapping, characterization, and optimization of autonomously replicating sequences
in yeast”. Genome Research Vol. 23: 698–704.

Lobry, J. R. (1996). “Asymmetric substitution patterns in the two DNA strands of
bacteria”. Molecular Biology and Evolution Vol. 13: 660–665.

Lundgren, M., A. Andersson, L. Chen, P. Nilsson, and R. Bernander (2004). “Three
replication origins in Sulfolobus species: Synchronous initiation of chromosome
replication and asynchronous termination”. Proceedings of the National Academy of
Sciences of the United States of America Vol. 101: 7046–7051.

Lysov, Y., V. Florent’ev, A. Khorlin, K. Khrapko, V. Shik, and A. Mirzabekov (1988).
“DNA sequencing by hybridization with oligonucleotides”. Doklady Academy Nauk
USSR Vol. 303: 1508–1511.

Ma, J., A. Ratan, B. J. Raney, B. B. Suh, W. Miller, and D. Haussler (2008). “The infinite
sites model of genome evolution”. Proceedings of the National Academy of Sciences of
the United States of America Vol. 105: 14254–14261.

Maxam, A. M. and W. Gilbert (1977). “A new method for sequencing DNA.” Proceedings
of the National Academy of Sciences of the United States of America Vol. 74: 560–564.

351



Medvedev, P., S. K. Pham, M. Chaisson, G. Tesler, and P. A. Pevzner (2011). “Paired
de Bruijn Graphs: A Novel Approach for Incorporating Mate Pair Information into
Genome Assemblers.” Journal of Computational Biology Vol. 18: 1625–1634.

Nadeau, J. H. and B. A. Taylor (1984). “Lengths of chromosomal segments conserved
since divergence of man and mouse”. Proceedings of the National Academy of Sciences
of the United States of America Vol. 81: 814–818.

Ng, J., N. Bandeira, W.-T. Liu, M. Ghassemian, T. L. Simmons, W. H. Gerwick, R. Lining-
ton, P. Dorrestein, and P. A. Pevzner (2009). “Dereplication and de novo sequencing
of nonribosomal peptides”. Nature Methods Vol. 6: 596–599.

Ohno, S. (1973). “Ancient linkage groups and frozen accidents”. Nature Vol. 244: 259–
262.

Park, H. D., K. M. Guinn, M. I. Harrell, R. Liao, M. I. Voskuil, M. Tompa, G. K. Schoolnik,
and D. R. Sherman (2003). “Rv3133c/dosR is a transcription factor that mediates the
hypoxic response of Mycobacterium tuberculosis”. Molecular Microbiology Vol. 48:
833–843.

Pevzner, P. and G. Tesler (2003a). “Genome rearrangements in mammalian evolution:
lessons from human and mouse genomes”. Genome Research Vol. 13: 37–45.

Pevzner, P. and G. Tesler (2003b). “Human and mouse genomic sequences reveal exten-
sive breakpoint reuse in mammalian evolution”. Proceedings of the National Academy
of Sciences of the United States of America Vol. 100: 7672–7677.

Pevzner, P. A. (1989). “1-Tuple DNA sequencing: computer analysis”. Journal of Biomolec-
ular Structure and Dynamics Vol. 7: 63–73.

Pevzner, P. A., H Tang, and M. S. Waterman (2001). “An Eulerian path approach to DNA
fragment assembly”. Proceedings of the National Academy of Sciences of the United States
of America Vol. 98: 9748–53.

Rosenblatt, J. and P. Seymour (1982). “The Structure of Homometric Sets”. SIAM Journal
on Algebraic Discrete Methods Vol. 3: 343–350.

Sanger, F, S Nicklen, and A. Coulson (1977). “DNA sequencing with chain-terminating
inhibitors”. Proceedings of The National Academy of Sciences of The United States Of
America Vol. 74: 5463–5467.

Sedgewick, R. and P. Flajolet (2013). An Introduction to the Analysis of Algorithms. Addison-
Wesley.

352



Sernova, N. V. and M. S. Gelfand (2008). “Identification of replication origins in prokary-
otic genomes”. Briefings in Bioinformatics Vol. 9: 376–391.

Smith, T. F. and M. S. Waterman (1981). “Identification of common molecular subse-
quences.” Journal of Molecular Biology Vol. 147: 195–197.

Solov’ev, A. (1966). “A combinatorial identity and its application to the problem about
the first occurence of a rare event”. Theory of Probability and its Applications Vol. 11:
276–282.

Southern, E. (1988). “Analysing Polynucleotide Sequences”. Patent (United Kingdom).

Stachelhaus, T., H. D. Mootz, and M. A. Marahiel (1999). “The specificity-conferring
code of adenylation domains in nonribosomal peptide synthetases.” Chemistry &
Biology Vol. 6: 493–505.

Sturtevant, A. H. (1921). “A Case of Rearrangement of Genes in Drosophila”. Proceedings
of the National Academy of Sciences of the United States of America Vol. 7: 235–237.

Sturtevant, A. H. and T. Dobzhansky (1936). “Inversions in the Third Chromosome of
Wild Races of Drosophila Pseudoobscura, and Their Use in the Study of the History
of the Species”. Proceedings of the National Academy of Sciences of the United States of
America Vol. 22: 448–450.

Tang, Y. Q., J. Yuan, G. Osapay, K. Osapay, D. Tran, C. J. Miller, A. J. Ouellette, and
M. E. Selsted (1999). “A cyclic antimicrobial peptide produced in primate leukocytes
by the ligation of two truncated alpha-defensins”. Science Vol. 286: 498–502.

Venkataraman, N., A. L. Cole, P. Ruchala, A. J. Waring, R. I. Lehrer, O. Stuchlik, J. Pohl,
and A. M. Cole (2009). “Reawakening retrocyclins: ancestral human defensins active
against HIV-1”. PLoS Biology Vol. 7: e95.

Wang, X., C. Lesterlin, R. Reyes-Lamothe, G. Ball, and D. J. Sherratt (2011). “Replication
and segregation of an Escherichia coli chromosome with two replication origins”.
Proceedings of the National Academy of Sciences Vol. 108: E243–E250.

Xia, X. (2012). “DNA replication and strand asymmetry in prokaryotic and mitochon-
drial genomes”. Current Genomics Vol. 13: 16–27.

Yancopoulos, S., O. Attie, and R. Friedberg (2005). “Efficient sorting of genomic per-
mutations by translocation, inversion and block interchange”. Bioinformatics Vol. 21:
3340–3346.

353



Zerbino, D. R. and E. Birney (2008). “Velvet: Algorithms for de novo short read assembly
using de Bruijn graphs”. Genome Research Vol. 18: 821–829.

Zhao, H. and G. Bourque (2009). “Recovering genome rearrangements in the mam-
malian phylogeny”. Genome Research Vol. 19: 934–942.

354



Image Courtesies

Figure 1.26: Ævar Arnfjörð Bjarmason
Figure 3.5: Dan Gilbert
Figure 3.45 (left): Royal Irish Academy
Figure 4.1: Open Clip Art
Figure 6.27: Wikimedia Commons user Skbkekas
Figure 6.1: Glenn Tesler
Figure 6.2: Glenn Tesler
Figure 6.3: Max Alekseyev
Figure 6.4: Max Alekseyev
Figure 6.5: Glenn Tesler
Figure 6.6: Glenn Tesler
Figure 6.22: Glenn Tesler

355


	Cover
	Overview
	Contents
	List of Code Challenges
	About the Textbook
	Chapter 1: Where in the Genome Does DNA Replication Begin?
	Chapter 2: Which DNA Patterns Play the Role of Molecular Clocks?
	Chapter 3: How Do We Assemble Genomes?
	Chapter 4: How Do We Sequence Antibiotics?
	Chapter 5: How Do We Compare DNA Sequences?
	Chapter 6: Are There Fragile Regions in the Human Genome?
	Bibliography
	Image Courtesies



